Skip to content

A collection of Meta-Reinforcement Learning algorithms in PyTorch

License

Notifications You must be signed in to change notification settings

RobvanGastel/meta-rl-algorithms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

83 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Meta-Reinforcement Learning Algorithms

A PyTorch implementation of meta-reinforcement learning algorithms, RL^2 PPO, MGRL, and SNAIL.

Setup

Install the packages using the requirements.txt file.

# using conda
conda create --name meta_rl python=3.10 --file requirements.txt
# Or pip
pip install requirements.txt

Usage

Run experiments by using the following example command:

python main.py --name experiment_name -c configs/rl2_ppo.yml

Algorithms

  • RL^2 Proximal Policy Optimization (PPO)
  • Meta-Gradient Reinforcement Learning (A2C)
    • Work in progress, last step is to fix the outer-loop gamma output.
  • SNAIL

References

About

A collection of Meta-Reinforcement Learning algorithms in PyTorch

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages