You are given an array nums
consisting of positive integers.
We call a subarray of nums
nice if the bitwise AND of every pair of elements that are in different positions in the subarray is equal to 0
.
Return the length of the longest nice subarray.
A subarray is a contiguous part of an array.
Note that subarrays of length 1
are always considered nice.
Example 1:
Input: nums = [1,3,8,48,10] Output: 3 Explanation: The longest nice subarray is [3,8,48]. This subarray satisfies the conditions: - 3 AND 8 = 0. - 3 AND 48 = 0. - 8 AND 48 = 0. It can be proven that no longer nice subarray can be obtained, so we return 3.
Example 2:
Input: nums = [3,1,5,11,13] Output: 1 Explanation: The length of the longest nice subarray is 1. Any subarray of length 1 can be chosen.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
class Solution:
def longestNiceSubarray(self, nums: List[int]) -> int:
ans = j = t = 0
for i, v in enumerate(nums):
while t & v:
t ^= nums[j]
j += 1
t |= v
ans = max(ans, i - j + 1)
return ans
class Solution {
public int longestNiceSubarray(int[] nums) {
int j = 0, t = 0;
int ans = 0;
for (int i = 0; i < nums.length; ++i) {
while ((t & nums[i]) != 0) {
t ^= nums[j++];
}
t |= nums[i];
ans = Math.max(ans, i - j + 1);
}
return ans;
}
}
class Solution {
public:
int longestNiceSubarray(vector<int>& nums) {
int t = 0, j = 0;
int ans = 0;
for (int i = 0; i < nums.size(); ++i) {
while (t & nums[i]) {
t ^= nums[j++];
}
t |= nums[i];
ans = max(ans, i - j + 1);
}
return ans;
}
};
func longestNiceSubarray(nums []int) int {
t, j := 0, 0
ans := 0
for i, v := range nums {
for (t & v) != 0 {
t ^= nums[j]
j++
}
t |= v
ans = max(ans, i-j+1)
}
return ans
}
func max(a, b int) int {
if a > b {
return a
}
return b
}