This application uses Streamlit to facilitate recording or uploading audio files for technical interview answers. It processes the audio to generate a detailed report, which includes transcription, summary, key points extraction, clarity, relevance, depth evaluation, and sentiment analysis. The report is saved in a .docx
file that can be downloaded.
Python 3.10
streamlit
openai
transformers
torch
docx
audio_recorder_streamlit
python-dotenv
-
Install Dependencies:
pip install streamlit openai transformers torch docx audio_recorder_streamlit python-dotenv
or
pip install -r req_st.txt
-
Create a .env File: Add your OpenAI API key to a .env file in the root directory:
OPENAI_API_KEY=your_openai_api_key
transcribe_audio()
: Transcribes audio files using OpenAI's API.abstract_summary_extraction()
: Summarizes the transcription.key_points_extraction()
: Extracts key points.evaluate_clarity_of_key_points()
: Rates clarity of key points.evaluate_relevance_of_key_points()
: Rates relevance of key points.evaluate_depth_of_key_points()
: Rates depth of key points.evaluate_sentiment_of_transcription()
: Performs sentiment analysis.split_complex_responses()
: Splits responses into manageable parts.save_as_docx()
: Saves the results in a.docx
file.process_audio_and_generate_report()
: Main function to process audio and generate the report.generate_interview_question()
: Randomly selects an interview question.
To run the Streamlit app, use the following command:
streamlit run streamlit.py