Skip to content

Commit

Permalink
Version 2.0.0a2 (automl#883)
Browse files Browse the repository at this point in the history
## Bugfixes
- Fixed random weight (re-)generalization of multi-objective algorithms: Before the weights were generated for each call to ``build_matrix``, now we only re-generate them for every iteration.
- Optimization may get stuck because of deep copying an iterator for callback: We removed the configuration call from ``on_next_configurations_end``.

## Minor
- Removed example badget in README.
- Added SMAC logo to README.

Co-authored-by: Katharina Eggensperger <[email protected]>
Co-authored-by: Matthias Feurer <[email protected]>
Co-authored-by: dengdifan <[email protected]>
Co-authored-by: Carolin Benjamins <[email protected]>
Co-authored-by: Eric Kalosa-Kenyon <[email protected]>
  • Loading branch information
6 people authored Oct 26, 2022
1 parent ca4ffba commit dd249cd
Show file tree
Hide file tree
Showing 18 changed files with 109 additions and 54 deletions.
2 changes: 0 additions & 2 deletions .github/workflows/dist.yml
Original file line number Diff line number Diff line change
Expand Up @@ -9,14 +9,12 @@ on:
branches:
- main
- development
- development-2.0

# Trigger on a open/push to a PR targeting one of these branches
pull_request:
branches:
- main
- development
- development-2.0

jobs:
dist:
Expand Down
15 changes: 13 additions & 2 deletions .github/workflows/docs.yml
Original file line number Diff line number Diff line change
Expand Up @@ -11,14 +11,12 @@ on:
branches:
- main
- development
- development-2.0

# Trigger on a open/push to a PR targeting one of these branches
pull_request:
branches:
- main
- development
- development-2.0

env:
name: SMAC3
Expand All @@ -36,9 +34,16 @@ jobs:
python-version: "3.10"

- name: Install dependencies
id: install
run: |
pip install ".[gpytorch,dev]"
# Getting the version
SMAC_VERSION=$(python -c "import smac; print('v' + str(smac.version));")
# Make it a global variable
echo "SMAC_VERSION=$SMAC_VERSION" >> $GITHUB_ENV
- name: Make docs
run: |
make clean
Expand All @@ -58,13 +63,19 @@ jobs:
rm -rf $branch_name
cp -r ../${{ env.name }}/docs/build/html $branch_name
# we also copy the current SMAC_VERSION
rm -rf $SMAC_VERSION
cp -r ../${{ env.name }}/docs/build/html $SMAC_VERSION
- name: Push to gh-pages
if: (contains(github.ref, 'develop') || contains(github.ref, 'main')) && github.event_name == 'push'
run: |
last_commit=$(git log --pretty=format:"%an: %s")
cd ../gh-pages
branch_name=${GITHUB_REF##*/}
git add $branch_name/
git add $SMAC_VERSION/
git config --global user.name 'Github Actions'
git config --global user.email '[email protected]'
git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/${{ github.repository }}
Expand Down
2 changes: 0 additions & 2 deletions .github/workflows/pre-commit.yml
Original file line number Diff line number Diff line change
Expand Up @@ -9,14 +9,12 @@ on:
branches:
- main
- development
- development-2.0

# When a push occurs on a PR that targets these branches
pull_request:
branches:
- main
- development
- development-2.0

jobs:
run-all-files:
Expand Down
2 changes: 0 additions & 2 deletions .github/workflows/pytest.yml
Original file line number Diff line number Diff line change
Expand Up @@ -9,14 +9,12 @@ on:
branches:
- main
- development
- development-2.0

# Triggers with push to a pr aimed at main
pull_request:
branches:
- main
- development
- development-2.0

schedule:
# Every day at 7AM UTC
Expand Down
5 changes: 3 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,11 +2,12 @@


[![Tests](https://github.com/automl/SMAC3/actions/workflows/pytest.yml/badge.svg?branch=main)](https://github.com/automl/SMAC3/actions/workflows/pytest.yml)
[![Docs](https://github.com/automl/SMAC3/actions/workflows/docs.yml/badge.svg?branch=main)](https://github.com/automl/SMAC3/actions/workflows/docs.yml)
[![Examples](https://github.com/automl/SMAC3/actions/workflows/examples.yml/badge.svg?branch=main)](https://github.com/automl/SMAC3/actions/workflows/examples.yml)
[![Documentation](https://github.com/automl/SMAC3/actions/workflows/docs.yml/badge.svg?branch=main)](https://github.com/automl/SMAC3/actions/workflows/docs.yml)
[![codecov
Status](https://codecov.io/gh/automl/SMAC3/branch/master/graph/badge.svg)](https://codecov.io/gh/automl/SMAC3)

<img src="docs/images/logo.png" style="width: 50%;" />

SMAC is a tool for algorithm configuration to optimize the parameters of arbitrary algorithms, including hyperparameter
optimization of Machine Learning algorithms. The main core consists of Bayesian Optimization in combination with an
aggressive racing mechanism to efficiently decide which of two configurations performs better.
Expand Down
11 changes: 11 additions & 0 deletions changelog.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,14 @@
# 2.0.0a2

## Bugfixes
- Fixed random weight (re-)generalization of multi-objective algorithms: Before the weights were generated for each call to ``build_matrix``, now we only re-generate them for every iteration.
- Optimization may get stuck because of deep copying an iterator for callback: We removed the configuration call from ``on_next_configurations_end``.

## Minor
- Removed example badget in README.
- Added SMAC logo to README.


# 2.0.0a1

## Big Changes
Expand Down
5 changes: 5 additions & 0 deletions docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,11 @@
"copyright": copyright,
"author": author,
"version": version,
"versions": {
f"v{version} (unstable)": "#",
"v2.0.0a1": "https://automl.github.io/SMAC3/v2.0.0a1/",
"v1.4.0": "https://automl.github.io/SMAC3/v1.4.0/",
},
"name": name,
"html_theme_options": {
"github_url": "https://github.com/automl/SMAC3",
Expand Down
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def read_file(filepath: str) -> str:
"pytest-xdist",
"pytest-timeout",
# Docs
"automl-sphinx-theme>=0.1.18",
"automl-sphinx-theme>=0.2",
# Others
"mypy",
"isort",
Expand Down
2 changes: 1 addition & 1 deletion smac/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
Copyright {datetime.date.today().strftime('%Y')}, Marius Lindauer, Katharina Eggensperger,
Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass
and Frank Hutter"""
version = "2.0.0a1"
version = "2.0.0a2"


try:
Expand Down
4 changes: 1 addition & 3 deletions smac/callback.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
from __future__ import annotations

from ConfigSpace import Configuration

import smac
from smac.runhistory import TrialInfo, TrialInfoIntent, TrialValue

Expand Down Expand Up @@ -37,7 +35,7 @@ def on_next_configurations_start(self, smbo: smac.main.BaseSMBO) -> None:
"""
pass

def on_next_configurations_end(self, smbo: smac.main.BaseSMBO, configurations: list[Configuration]) -> None:
def on_next_configurations_end(self, smbo: smac.main.BaseSMBO) -> None:
"""Called after the intensification asks for new configurations. Essentially, this callback is called
before the surrogate model is trained and before the acquisition function is called.
"""
Expand Down
11 changes: 7 additions & 4 deletions smac/main/smbo.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,6 @@

from typing import Any, Iterator

import copy

import numpy as np
from ConfigSpace import Configuration

Expand Down Expand Up @@ -35,6 +33,8 @@ def __init__(self, *args: Any, **kwargs: Any) -> None:
self._considered_budgets: list[float | None] = [None]

def get_next_configurations(self, n: int | None = None) -> Iterator[Configuration]: # noqa: D102
# TODO: Let's return the initial configurations from this method too

for callback in self._callbacks:
callback.on_next_configurations_start(self)

Expand All @@ -53,6 +53,7 @@ def get_next_configurations(self, n: int | None = None) -> Iterator[Configuratio
# the configspace.
return iter([self._scenario.configspace.sample_configuration(1)])

# TODO: Check if X/Y differs from the last run, otherwise use cached results
self._model.train(X, Y)

x_best_array: np.ndarray | None = None
Expand All @@ -79,15 +80,17 @@ def get_next_configurations(self, n: int | None = None) -> Iterator[Configuratio
)

for callback in self._callbacks:
challenger_list = list(copy.deepcopy(challengers))
callback.on_next_configurations_end(self, challenger_list)
callback.on_next_configurations_end(self)

return challengers

def ask(self) -> tuple[TrialInfoIntent, TrialInfo]: # noqa: D102
for callback in self._callbacks:
callback.on_ask_start(self)

if self._runhistory_encoder.multi_objective_algorithm is not None:
self._runhistory_encoder.multi_objective_algorithm.update_on_iteration_start()

intent, trial_info = self._intensifier.get_next_trial(
challengers=self._initial_design_configs,
incumbent=self._incumbent,
Expand Down
4 changes: 3 additions & 1 deletion smac/model/gaussian_process/priors/tophat_prior.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,8 @@ def __init__(
self._log_min = np.log(lower_bound)
self._max = upper_bound
self._log_max = np.log(upper_bound)
self._prob = 1 / (self._max - self._min)
self._log_prob = np.log(self._prob)

if not (self._max > self._min):
raise Exception("Upper bound of Tophat prior must be greater than the lower bound.")
Expand All @@ -50,7 +52,7 @@ def _get_log_probability(self, theta: float) -> float:
if theta < self._min or theta > self._max:
return -np.inf
else:
return 0
return self._log_prob

def _sample_from_prior(self, n_samples: int) -> np.ndarray:
if np.ndim(n_samples) != 0:
Expand Down
7 changes: 5 additions & 2 deletions smac/multi_objective/parego.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,8 @@ def __init__(
self._rng = np.random.RandomState(seed)

self._rho = rho
self._theta = self._rng.rand(self._n_objectives)
self.update_on_iteration_start()
# Will be set on starting an SMBO iteration
self._theta: np.ndarray | None = None

@property
def meta(self) -> dict[str, Any]: # noqa: D102
Expand All @@ -61,5 +61,8 @@ def update_on_iteration_start(self) -> None: # noqa: D102

def __call__(self, values: list[float]) -> float: # noqa: D102
# Weight the values
if self._theta is None:
raise ValueError("Iteration not yet initalized; Call `update_on_iteration_start()` first")

theta_f = self._theta * values
return float(np.max(theta_f, axis=0) + self._rho * np.sum(theta_f, axis=0))
3 changes: 0 additions & 3 deletions smac/runhistory/encoder/encoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,9 +33,6 @@ def _build_matrix(
# TODO: Extend for native multi-objective
y = np.ones([n_rows, 1])

if self._multi_objective_algorithm is not None:
self._multi_objective_algorithm.update_on_iteration_start()

# Then populate matrix
for row, (key, run) in enumerate(trials.items()):
# Scaling is automatically done in configSpace
Expand Down
2 changes: 1 addition & 1 deletion smac/utils/multi_objective.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,6 @@ def normalize_costs(
cost = 1.0
else:
cost = p / q
costs += [cost]
costs.append(cost)

return costs
2 changes: 1 addition & 1 deletion tests/test_callback.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ def on_iteration_end(self, smbo: smac.main.BaseSMBO) -> None:
def on_next_configurations_start(self, smbo: smac.main.BaseSMBO) -> None:
self.next_configurations_start_counter += 1

def on_next_configurations_end(self, smbo: smac.main.BaseSMBO, configurations: list[Configuration]) -> None:
def on_next_configurations_end(self, smbo: smac.main.BaseSMBO) -> None:
self.next_configurations_end_counter += 1

def on_ask_start(self, smbo: smac.main.BaseSMBO) -> None:
Expand Down
56 changes: 43 additions & 13 deletions tests/test_multi_objective/test_schaffer.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,17 @@
from __future__ import annotations

import numpy as np
import pytest
from ConfigSpace import ConfigurationSpace, Float

from smac import (
AlgorithmConfigurationFacade,
BlackBoxFacade,
Callback,
HyperparameterOptimizationFacade,
RandomFacade,
)
from smac.multi_objective import AbstractMultiObjectiveAlgorithm
from smac.multi_objective.aggregation_strategy import MeanAggregationStrategy
from smac.multi_objective.parego import ParEGO

Expand Down Expand Up @@ -52,16 +56,33 @@ def configspace():
return cs


class WrapStrategy(AbstractMultiObjectiveAlgorithm):
def __init__(self, strategy: AbstractMultiObjectiveAlgorithm, *args, **kwargs):
self.strategy = strategy(*args, **kwargs)
self.n_calls_update_on_iteration_start = 0
self.n_calls___call__ = 0

def update_on_iteration_start(self) -> None: # noqa: D102
self.n_calls_update_on_iteration_start += 1
return self.strategy.update_on_iteration_start()

def __call__(self, values: list[float]) -> float: # noqa: D102
self.n_calls___call__ += 1
return self.strategy(values)


@pytest.mark.parametrize(
"facade", [BlackBoxFacade, HyperparameterOptimizationFacade, AlgorithmConfigurationFacade, RandomFacade]
)
def test_mean_aggregation(facade, make_scenario, configspace):
scenario = make_scenario(configspace, use_multi_objective=True)

multi_objective_algorithm = WrapStrategy(MeanAggregationStrategy, scenario=scenario)

smac = facade(
scenario=scenario,
target_function=tae,
multi_objective_algorithm=MeanAggregationStrategy(scenario=scenario),
multi_objective_algorithm=multi_objective_algorithm,
overwrite=True,
)
incumbent = smac.optimize()
Expand All @@ -75,32 +96,41 @@ def test_mean_aggregation(facade, make_scenario, configspace):

assert diff < 0.06

assert multi_objective_algorithm.n_calls_update_on_iteration_start >= 100
assert multi_objective_algorithm.n_calls_update_on_iteration_start <= 130
assert multi_objective_algorithm.n_calls___call__ >= 100


@pytest.mark.parametrize(
"facade", [BlackBoxFacade, HyperparameterOptimizationFacade, AlgorithmConfigurationFacade, RandomFacade]
)
def test_parego(facade, make_scenario, configspace):
scenario = make_scenario(configspace, use_multi_objective=True)

multi_objective_algorithm = WrapStrategy(ParEGO, scenario=scenario)

smac = facade(
scenario=scenario,
target_function=tae,
multi_objective_algorithm=ParEGO(scenario=scenario),
multi_objective_algorithm=multi_objective_algorithm,
overwrite=True,
)
# The incumbent is not ambiguously because we have a Pareto front

smac.optimize()

# We use the mean aggregation strategy to get the same weights
multi_objective_algorithm = MeanAggregationStrategy(scenario=scenario)
smac.runhistory.multi_objective_algorithm = multi_objective_algorithm
# The incumbent is not ambiguous because we have a Pareto front
confs, vals = smac.runhistory.get_pareto_front()

incumbent, _ = smac.runhistory.get_incumbent()
min_ = np.inf
for x, y in zip(confs, vals):
tr = schaffer(x["x"])
assert np.allclose(tr, y)
if np.sum(y) < min_:
min_ = np.sum(y)

f1_inc, f2_inc = schaffer(incumbent["x"])
f1_opt, f2_opt = get_optimum()
inc = f1_inc + f2_inc
opt = f1_opt + f2_opt
diff = abs(inc - opt)
opt = np.sum(get_optimum())
assert abs(np.sum(min_) - opt) <= 0.06

assert diff < 0.06
assert multi_objective_algorithm.n_calls_update_on_iteration_start >= 100
assert multi_objective_algorithm.n_calls_update_on_iteration_start <= 120
assert multi_objective_algorithm.n_calls___call__ >= 100
Loading

0 comments on commit dd249cd

Please sign in to comment.