Skip to content

Commit

Permalink
Revise and refactor methods to do with Local Contrast Normalisation
Browse files Browse the repository at this point in the history
Issue #370
  • Loading branch information
towsey committed Sep 15, 2020
1 parent e563149 commit db9a871
Show file tree
Hide file tree
Showing 9 changed files with 192 additions and 164 deletions.
2 changes: 1 addition & 1 deletion src/AnalysisPrograms/Audio2InputForConvCNN.cs
Original file line number Diff line number Diff line change
Expand Up @@ -666,7 +666,7 @@ public static AudioToSonogramResult GenerateSpectrogramImages(FileInfo sourceRec

////LoggedConsole.WriteLine("LCN: FramesPerSecond (Prior to LCN) = {0}", sonogram.FramesPerSecond);
////LoggedConsole.WriteLine("LCN: Neighbourhood of {0} seconds = {1} frames", neighbourhoodSeconds, neighbourhoodFrames);
sonogram.Data = NoiseRemoval_Briggs.NoiseReduction_ShortRecordings_SubtractAndLCN(sonogram.Data, lowPercentile, neighbourhoodFrames, lcnContrastLevel);
sonogram.Data = NoiseRemoval_Briggs.NoiseReduction_byLCN(sonogram.Data, lowPercentile, neighbourhoodFrames, lcnContrastLevel);

// draw amplitude spectrogram unannotated
FileInfo outputImage1 = new FileInfo(Path.Combine(outputDirectory.FullName, sourceName + ".amplitd.bmp"));
Expand Down
2 changes: 1 addition & 1 deletion src/AnalysisPrograms/OscillationsGeneric.cs
Original file line number Diff line number Diff line change
Expand Up @@ -184,7 +184,7 @@ public static void Main(Arguments arguments)
// LocalContrastNormalisation over frequency bins is better and faster.
int neighbourhood = 15;
double contrastLevel = 0.5;
sonogram.Data = NoiseRemoval_Briggs.NoiseReduction_byLCNDivision(sonogram.Data, neighbourhood, contrastLevel);
sonogram.Data = NoiseRemoval_Briggs.NoiseReduction_byLCN(sonogram.Data, neighbourhood, contrastLevel);

// ###############################################################
// lowering the sensitivity threshold increases the number of hits.
Expand Down
2 changes: 1 addition & 1 deletion src/AnalysisPrograms/SURFAnalysis.cs
Original file line number Diff line number Diff line change
Expand Up @@ -385,7 +385,7 @@ public static AudioToSonogramResult GenerateSpectrogramImages(FileInfo sourceRec

//LoggedConsole.WriteLine("LCN: FramesPerSecond (Prior to LCN) = {0}", sonogram.FramesPerSecond);
//LoggedConsole.WriteLine("LCN: Neighbourhood of {0} seconds = {1} frames", neighbourhoodSeconds, neighbourhoodFrames);
sonogram.Data = NoiseRemoval_Briggs.NoiseReduction_ShortRecordings_SubtractAndLCN(sonogram.Data, lowPercentile, neighbourhoodFrames, lcnContrastLevel);
sonogram.Data = NoiseRemoval_Briggs.NoiseReduction_byLCN(sonogram.Data, lowPercentile, neighbourhoodFrames, lcnContrastLevel);

// draw amplitude spectrogram unannotated
FileInfo outputImage1 = new FileInfo(Path.Combine(opDir.FullName, sourceName + ".amplitd.png"));
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -555,11 +555,14 @@ public static Image<Rgb24> GetLcnSpectrogram(
LoggedConsole.WriteLine("LCN: Neighbourhood of {0} seconds = {1} frames", neighbourhoodSeconds, neighbourhoodFrames);

// subtract the lowest 20% of frames. This is first step in LCN noise removal. Sets the baseline.
const int lowPercentile = 20;
//const int lowPercentile = 20;
//spectrogram.Data =
// NoiseRemoval_Briggs.NoiseReduction_byLowestPercentileSubtraction(spectrogram.Data, lowPercentile);
spectrogram.Data =
NoiseRemoval_Briggs.NoiseReduction_byLowestPercentileSubtraction(spectrogram.Data, lowPercentile);
spectrogram.Data =
NoiseRemoval_Briggs.NoiseReduction_byLCNDivision(spectrogram.Data, neighbourhoodFrames, lcnContrastLevel);
NoiseRemoval_Briggs.NoiseReduction_byLCN(spectrogram.Data, neighbourhoodFrames, lcnContrastLevel);

//spectrogram.Data =
// NoiseRemoval_Briggs.NoiseReduction_byLCNDivision(spectrogram.Data, lowPercent: 20, neighbourhoodFrames, lcnContrastLevel);

// Finally background noise removal. This step is optional.
double[] spectralDecibelBgn = NoiseProfile.CalculateBackgroundNoise(spectrogram.Data);
Expand Down
259 changes: 176 additions & 83 deletions src/AudioAnalysisTools/DSP/NoiseRemoval_Briggs.cs

Large diffs are not rendered by default.

36 changes: 0 additions & 36 deletions src/AudioAnalysisTools/Events/EventExtentions.cs
Original file line number Diff line number Diff line change
Expand Up @@ -451,41 +451,5 @@ public static IEnumerable<ISpectralPoint> GetCompositeTrack<T>(IEnumerable<T> ev

return maxAmplitudePoints.OrderBy(p => p);
}

/// <summary>
/// Some events close to microphone. Reduces the signal amplitude.
/// </summary>
public static List<EventCommon> FilterEventsAfterAmplitudeNormalisation(
List<EventCommon> events,
double[,] spectrogramData,
UnitConverters converter,
double decibelThreshold)
{
// set maximum decibel value
var filteredEvents = new List<EventCommon>();

foreach (var ev in events)
{
/*
var decibelArray = GetDecibelArrayFromEvent(ev, spectrogramData, converter);
var tracks = GetCompositeTrack<IEnumerable<T>>(ev);
ev.Tracks;
var converter1 = ev.Converter;
// get the decibel profile
var decibelArray = GetDecibelArrayFromEvent(ev, spectrogramData, converter);
var maxDb = decibelArray.Max();
// adjust profile to new gain. First find the max decibel value in the event.
// if max decibels less than
filteredEvents.Add(ev);
*/
}

return filteredEvents;
}
}
}
10 changes: 3 additions & 7 deletions src/AudioAnalysisTools/Tracks/ForwardTrackAlgorithm.cs
Original file line number Diff line number Diff line change
Expand Up @@ -109,20 +109,16 @@ public static (List<EventCommon> Events, double[] CombinedIntensity) GetForwardT

List<EventCommon> returnEvents = events.Cast<EventCommon>().ToList();

// ########################## NEW WORK - NORMALISE AMPLITUDE AND THEN FILTER EVENTS Again.
//allResults.NewEvents = EventExtentions.FilterEventsUsingDynamicGain(
// allResults.NewEvents.Cast<EventCommon>().ToList(),
// allResults.Sonogram.Data,
// decibelThreshold);
//Log.Debug($"Event count after adjusting gain = {allResults.NewEvents.Count}");

// Combine coincident events that are stacked one above other.
// This will help in some cases to combine related events.
if (parameters.CombinePossibleHarmonics)
{
returnEvents = CompositeEvent.CombineStackedEvents(events, parameters.HarmonicsStartDifference, parameters.HarmonicsHertzGap);
}

// ##### Combining possible sequences currently happens at post-processing time - i.e. after all the profiles have been executed.
// ##### Combining possible sequences might be useful at the profile stage.
// So the following may be required in future - leave here for now.
// Combine events that are temporally close and in the same frequency band.
// This will help in some cases to combine related events.
//if (parameters.CombinePossibleSyllableSequence)
Expand Down
6 changes: 3 additions & 3 deletions src/TowseyLibrary/MatrixTools.cs
Original file line number Diff line number Diff line change
Expand Up @@ -306,9 +306,9 @@ public static double[] GetRowAveragesOfSubmatrix(double[,] m, int r1, int c1, in
return outM;
}

/*
* converts a matrix to a vector by concatenating columns.
*/
/// <summary>
/// Converts a matrix to a vector by concatenating its columns.
/// </summary>
public static double[] Matrix2Array(double[,] matrix)
{
int ht = matrix.GetLength(0);
Expand Down
28 changes: 0 additions & 28 deletions src/TowseyLibrary/NormalDist.cs
Original file line number Diff line number Diff line change
Expand Up @@ -248,34 +248,6 @@ public static void AverageAndSD(double[,] data, out double av, out double sd)
AverageAndSD(values, out av, out sd);
}

/// <summary>
/// This was written for the local contrast normalisation (LCN) of amplitude spectrograms.
/// However the contrast is calculated wrt the local part of frequency bin or column.
/// Plugging up of ends of the returned array is a hack but it does not really matter.
/// </summary>
public static double[] CalculateLocalVariance(double[] data, int window)
{
int L = data.Length;
int halfwindow = window / 2;
double[] variances = new double[L];

for (int i = 0; i <= L - window; i++)
{
double[] subV = DataTools.Subarray(data, i, window);
AverageAndVariance(subV, out var av, out var variance);
variances[i + halfwindow] = variance;
}

// plug up the ends
for (int i = 0; i < halfwindow; i++)
{
variances[i] = variances[halfwindow];
variances[L - i - 1] = variances[L - halfwindow - 1];
}

return variances;
}

public static double[] Normalise(double[] data)
{
AverageAndSD(data, out var av, out var sd);
Expand Down

0 comments on commit db9a871

Please sign in to comment.