Skip to content

Commit

Permalink
Add regression tests
Browse files Browse the repository at this point in the history
  • Loading branch information
Marinovsky committed Dec 4, 2024
1 parent 44cfec4 commit ac5ff8a
Show file tree
Hide file tree
Showing 2 changed files with 189 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,138 @@
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

using QuantConnect.Data;
using QuantConnect.Indicators;
using QuantConnect.Interfaces;
using System;
using System.Collections.Generic;

namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// Regression algorithm that asserts Stochastic indicator, registered with a different resolution consolidator,
/// is warmed up properly by calling QCAlgorithm.WarmUpIndicator
/// </summary>
public class ConsolidateHourBarsIntoDailyBarsRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private Symbol _spy;
private RelativeStrengthIndex _rsi;
private RelativeStrengthIndex _rsiTimeDelta;
private Dictionary<DateTime, decimal> _values = new();
private int _count;

public override void Initialize()
{
SetStartDate(2020, 5, 1);
SetEndDate(2020, 6, 5);

_spy = AddEquity("SPY", Resolution.Hour).Symbol;
_rsi = new RelativeStrengthIndex("FIRST", 15, MovingAverageType.Wilders);
RegisterIndicator(_spy, _rsi, Resolution.Daily);

_rsiTimeDelta = new RelativeStrengthIndex("SECOND" ,15, MovingAverageType.Wilders);
}

public override void OnData(Slice slice)
{
if (IsWarmingUp) return;

if (slice.ContainsKey(_spy) && slice[_spy] != null)
{
if (Time.Month == EndDate.Month)
{
var history = History(_spy, _count, Resolution.Daily);
foreach (var bar in history)
{
_rsiTimeDelta.Update(bar.EndTime, bar.Close);
var time = bar.EndTime.Date;
if (_rsiTimeDelta.Current.Value != _values[time])
{
throw new Exception($"Both {_rsi.Name} and {_rsiTimeDelta.Name} should have the same values, but they differ. {_rsi.Name}: {_values[time]} | {_rsiTimeDelta.Name}: {_rsiTimeDelta.Current.Value}");
}
}
Quit();
}
else
{
_values[Time.Date] = _rsi.Current.Value;
if (Time.Hour == 16)
{
_count++;
}
}
}
}

/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;

/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public List<Language> Languages { get; } = new() { Language.CSharp, Language.Python };

/// <summary>
/// Data Points count of all timeslices of algorithm
/// </summary>
public long DataPoints => 290;

/// <summary>
/// Data Points count of the algorithm history
/// </summary>
public int AlgorithmHistoryDataPoints => 20;

/// <summary>
/// Final status of the algorithm
/// </summary>
public AlgorithmStatus AlgorithmStatus => AlgorithmStatus.Completed;

/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Orders", "0"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Start Equity", "100000"},
{"End Equity", "100000"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Sortino Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "-5.215"},
{"Tracking Error", "0.159"},
{"Treynor Ratio", "0"},
{"Total Fees", "$0.00"},
{"Estimated Strategy Capacity", "$0"},
{"Lowest Capacity Asset", ""},
{"Portfolio Turnover", "0%"},
{"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"}
};
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from AlgorithmImports import *

class ConsolidateHourBarsIntoDailyBarsRegressionAlgorithm(QCAlgorithm):
def initialize(self):
# change the start date between runs to check that warm up shows the correct value
self.set_start_date(2020, 5, 1)
self.set_end_date(2020, 6, 5)
self.set_cash(100000)

self.spy = self.add_equity("SPY", Resolution.HOUR).symbol

# Resolution.DAILY indicators
self._rsi = RelativeStrengthIndex("First", 15, MovingAverageType.WILDERS)
self.register_indicator(self.spy, self._rsi, Resolution.DAILY)

# Resolution.DAILY indicators
self._rsi_timedelta = RelativeStrengthIndex("Second", 15, MovingAverageType.WILDERS)
self._values = {}
self.count = 0;

def on_data(self, data: Slice):
if self.is_warming_up:
return

if data.contains_key(self.spy) and data[self.spy] != None:
if self.time.month == self.end_date.month:
history = self.history[TradeBar](self.spy, self.count, Resolution.DAILY)
for bar in history:
time = bar.end_time.strftime('%Y-%m-%d')
self._rsi_timedelta.update(bar.end_time, bar.close)
if self._rsi_timedelta.current.value != self._values[time]:
raise Exception(f"Both {self._rsi.name} and {self._rsi_timedelta.name} should have the same values, but they differ. {self._rsi.name}: {self._values[time]} | {self._rsi_timedelta.name}: {self._rsi_timedelta.current.value}")
self.quit()
else:
time = self.time.strftime('%Y-%m-%d')
self._values[time] = self._rsi.current.value
if self.time.hour == 16:
self.count += 1

0 comments on commit ac5ff8a

Please sign in to comment.