Skip to content

This is the code for the SpeechTokenizer presented in the SpeechTokenizer: Unified Speech Tokenizer for Speech Language Models. Samples are presented on

License

Notifications You must be signed in to change notification settings

QCRIVoice/SpeechTokenizer

This branch is 36 commits ahead of, 10 commits behind ZhangXInFD/SpeechTokenizer:main.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

fd132a0 Â· Aug 15, 2024

History

70 Commits
Aug 15, 2024
Aug 15, 2024
Aug 31, 2023
Aug 15, 2024
Jul 11, 2024
Aug 15, 2024
Aug 15, 2024
Aug 15, 2024
Aug 28, 2023
Apr 24, 2024
Aug 11, 2024
Jul 11, 2024
Jun 6, 2024
Aug 15, 2024
Aug 15, 2024
Aug 15, 2024
Jul 11, 2024
Aug 15, 2024
Sep 1, 2023
Aug 15, 2024
Jul 10, 2024
Aug 1, 2024
Aug 15, 2024

Repository files navigation

SpeechTokenizer: Unified Speech Tokenizer for Speech Language Models

Introduction

This is the code for the SpeechTokenizer presented in the SpeechTokenizer: Unified Speech Tokenizer for Speech Language Models. SpeechTokenizer is a unified speech tokenizer for speech language models, which adopts the Encoder-Decoder architecture with residual vector quantization (RVQ). Unifying semantic and acoustic tokens, SpeechTokenizer disentangles different aspects of speech information hierarchically across different RVQ layers. Specifically, the code indices that the first quantizer of RVQ outputs can be considered as semantic tokens and the output of the remaining quantizers mainly contain timbre info, which serve as supplements for the information lost by the first quantizer. We provide our models:

  • A model operated at 16khz on monophonic speech trained on Librispeech with average representation across all HuBERT layers as semantic teacher.


Overview


The SpeechTokenizer framework.


Welcome to try our SLMTokBench and we will also open source our USLM !!

Release

  • [9/11] 🔥 We released code of soundstorm_speechtokenizer.
  • [9/10] 🔥 We released code and checkpoints of USLM.
  • [9/1] 🔥 We released code and checkpoints of SpeechTokenizer. Checkout the paper and demo.

Samples

Samples are provided on our demo page.

Installation

SpeechTokenizer requires Python>=3.8, and a reasonly recent version of PyTorch. To install SpeechTokenizer, you can run from this repository:

pip install -U speechtokenizer

# or you can clone the repo and install locally
git clone https://github.com/ZhangXInFD/SpeechTokenizer.git
cd SpeechTokenizer
pip install .

Usage

Model storage

Model Dataset Discription
speechtokenizer_hubert_avg LibriSpeech Adopt average representation across all HuBERT layers as semantic teacher

load model

from speechtokenizer import SpeechTokenizer

config_path = '/path/config.json'
ckpt_path = '/path/SpeechTokenizer.pt'
model = SpeechTokenizer.load_from_checkpoint(config_path, ckpt_path)
model.eval()

Extracting discrete representations

import torchaudio
import torch

# Load and pre-process speech waveform
wav, sr = torchaudio.load('<SPEECH_FILE_PATH>')

# monophonic checking
if wav.shape(0) > 1:
    wav = wav[:1,:]

if sr != model.sample_rate:
    wav = torchaudio.functional.resample(wav, sr, model.sample_rate)

wav = wav.unsqueeze(0)

# Extract discrete codes from SpeechTokenizer
with torch.no_grad():
    codes = model.encode(wav) # codes: (n_q, B, T)

RVQ_1 = codes[:1, :, :] # Contain content info, can be considered as semantic tokens
RVQ_supplement = codes[1:, :, :] # Contain timbre info, complete info lost by the first quantizer

Decoding discrete representations

# Concatenating semantic tokens (RVQ_1) and supplementary timbre tokens and then decoding
wav = model.decode(torch.cat([RVQ_1, RVQ_supplement], axis=0))

# Decoding from RVQ-i:j tokens from the ith quantizers to the jth quantizers
wav = model.decode(codes[i: (j + 1)], st=i) 

Citation

If you use this code or result in your paper, please cite our work as:

@misc{zhang2023speechtokenizer,
      title={SpeechTokenizer: Unified Speech Tokenizer for Speech Language Models}, 
      author={Xin Zhang and Dong Zhang and Shimin Li and Yaqian Zhou and Xipeng Qiu},
      year={2023},
      eprint={2308.16692},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

The code in this repository is released under the Apache 2.0 license as found in the LICENSE file.

About

This is the code for the SpeechTokenizer presented in the SpeechTokenizer: Unified Speech Tokenizer for Speech Language Models. Samples are presented on

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.3%
  • Other 0.7%