Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updating to match Numpy 2.0 requirements #7857

Merged
merged 16 commits into from
Aug 19, 2024
Merged
Show file tree
Hide file tree
Changes from 14 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions environment-dev.yml
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,10 @@ channels:
- nvidia
- conda-forge
dependencies:
- numpy>=1.20
- numpy>=1.24,<2.0
- pytorch>=1.9
- torchvision
- pytorch-cuda=11.6
- pytorch-cuda>=11.6
- pip
- pip:
- -r requirements-dev.txt
2 changes: 1 addition & 1 deletion monai/data/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -927,7 +927,7 @@ def compute_shape_offset(
corners = in_affine_ @ corners
all_dist = corners_out[:-1].copy()
corners_out = corners_out[:-1] / corners_out[-1]
out_shape = np.round(corners_out.ptp(axis=1)) if scale_extent else np.round(corners_out.ptp(axis=1) + 1.0)
out_shape = np.round(np.ptp(corners_out, axis=1)) if scale_extent else np.round(np.ptp(corners_out, axis=1) + 1.0)
offset = None
for i in range(corners.shape[1]):
min_corner = np.min(all_dist - all_dist[:, i : i + 1], 1)
Expand Down
2 changes: 1 addition & 1 deletion monai/transforms/io/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ def switch_endianness(data, new="<"):
if new not in ("<", ">"):
raise NotImplementedError(f"Not implemented option new={new}.")
if current_ != new:
data = data.byteswap().newbyteorder(new)
data = data.byteswap().view(data.dtype.newbyteorder(new))
elif isinstance(data, tuple):
data = tuple(switch_endianness(x, new) for x in data)
elif isinstance(data, list):
Expand Down
2 changes: 1 addition & 1 deletion monai/transforms/spatial/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -373,7 +373,7 @@ def rotate(img, angle, output_shape, mode, padding_mode, align_corners, dtype, l
if output_shape is None:
corners = np.asarray(np.meshgrid(*[(0, dim) for dim in im_shape], indexing="ij")).reshape((len(im_shape), -1))
corners = transform[:-1, :-1] @ corners # type: ignore
output_shape = np.asarray(corners.ptp(axis=1) + 0.5, dtype=int)
output_shape = np.asarray(np.ptp(corners, axis=1) + 0.5, dtype=int)
else:
output_shape = np.asarray(output_shape, dtype=int)
shift = create_translate(input_ndim, ((np.array(im_shape) - 1) / 2).tolist())
Expand Down
4 changes: 2 additions & 2 deletions monai/transforms/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -203,8 +203,8 @@ def set_random_state(self, seed: int | None = None, state: np.random.RandomState

"""
if seed is not None:
_seed = id(seed) if not isinstance(seed, (int, np.integer)) else seed
_seed = _seed % MAX_SEED
_seed = np.int64(id(seed) if not isinstance(seed, (int, np.integer)) else seed)
_seed = _seed % MAX_SEED # need to account for Numpy2.0 which doesn't silently convert to int64
self.R = np.random.RandomState(_seed)
return self

Expand Down
2 changes: 1 addition & 1 deletion requirements.txt
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
torch>=1.9
numpy>=1.20,<=1.26.0
numpy>=1.25,<2.0
KumoLiu marked this conversation as resolved.
Show resolved Hide resolved
2 changes: 1 addition & 1 deletion setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ setup_requires =
ninja
install_requires =
torch>=1.9
numpy>=1.20
numpy>=1.25,<2.0
KumoLiu marked this conversation as resolved.
Show resolved Hide resolved

[options.extras_require]
all =
Expand Down
2 changes: 1 addition & 1 deletion tests/test_meta_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -448,7 +448,7 @@ def test_shape(self):

def test_astype(self):
t = MetaTensor([1.0], affine=torch.tensor(1), meta={"fname": "filename"})
for np_types in ("float32", "np.float32", "numpy.float32", np.float32, float, "int", np.compat.long, np.uint16):
for np_types in ("float32", "np.float32", "numpy.float32", np.float32, float, "int", np.uint16):
self.assertIsInstance(t.astype(np_types), np.ndarray)
for pt_types in ("torch.float", torch.float, "torch.float64"):
self.assertIsInstance(t.astype(pt_types), torch.Tensor)
Expand Down
2 changes: 1 addition & 1 deletion tests/test_nifti_endianness.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ def test_switch(self): # verify data types
after = switch_endianness(before)
np.testing.assert_allclose(after.astype(float), expected_float)

before = np.array(["1.12", "-9.2", "42"], dtype=np.string_)
before = np.array(["1.12", "-9.2", "42"], dtype=np.bytes_)
after = switch_endianness(before)
np.testing.assert_array_equal(before, after)

Expand Down
4 changes: 2 additions & 2 deletions tests/test_signal_fillempty.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ class TestSignalFillEmptyNumpy(unittest.TestCase):
def test_correct_parameters_multi_channels(self):
self.assertIsInstance(SignalFillEmpty(replacement=0.0), SignalFillEmpty)
sig = np.load(TEST_SIGNAL)
sig[:, 123] = np.NAN
sig[:, 123] = np.nan
fillempty = SignalFillEmpty(replacement=0.0)
fillemptysignal = fillempty(sig)
self.assertTrue(not np.isnan(fillemptysignal).any())
Expand All @@ -42,7 +42,7 @@ class TestSignalFillEmptyTorch(unittest.TestCase):
def test_correct_parameters_multi_channels(self):
self.assertIsInstance(SignalFillEmpty(replacement=0.0), SignalFillEmpty)
sig = convert_to_tensor(np.load(TEST_SIGNAL))
sig[:, 123] = convert_to_tensor(np.NAN)
sig[:, 123] = convert_to_tensor(np.nan)
fillempty = SignalFillEmpty(replacement=0.0)
fillemptysignal = fillempty(sig)
self.assertTrue(not torch.isnan(fillemptysignal).any())
Expand Down
4 changes: 2 additions & 2 deletions tests/test_signal_fillemptyd.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ class TestSignalFillEmptyNumpy(unittest.TestCase):
def test_correct_parameters_multi_channels(self):
self.assertIsInstance(SignalFillEmptyd(replacement=0.0), SignalFillEmptyd)
sig = np.load(TEST_SIGNAL)
sig[:, 123] = np.NAN
sig[:, 123] = np.nan
data = {}
data["signal"] = sig
fillempty = SignalFillEmptyd(keys=("signal",), replacement=0.0)
Expand All @@ -46,7 +46,7 @@ class TestSignalFillEmptyTorch(unittest.TestCase):
def test_correct_parameters_multi_channels(self):
self.assertIsInstance(SignalFillEmptyd(replacement=0.0), SignalFillEmptyd)
sig = convert_to_tensor(np.load(TEST_SIGNAL))
sig[:, 123] = convert_to_tensor(np.NAN)
sig[:, 123] = convert_to_tensor(np.nan)
data = {}
data["signal"] = sig
fillempty = SignalFillEmptyd(keys=("signal",), replacement=0.0)
Expand Down
Loading