This repository contains the code and analysis for the ML4E club induction task focusing on applying machine learning algorithms such as linear regression, logistic regression, and random forest to a given dataset.
The project is organized as follows:
-wine.csv
:Given dataset
wine_linearregression.ipynb
: Linear regression analysis.wine_logisticregression.ipynb
: Logistic regression analysis.wine_randomforest.ipynb
: Random Forest analysis.
Clone this repository:
git clone https://github.com/Praneeth2312/wine_dataset_induction_task.git
R-squared Score: 0.26758604762487337 Mean Squared Error: 0.5597727581304021
Classification Report:
precision recall f1-score support
3 0.00 0.00 0.00 2
4 0.00 0.00 0.00 29
5 0.57 0.51 0.53 293
6 0.50 0.76 0.60 435
7 0.54 0.16 0.25 184
8 0.00 0.00 0.00 37
accuracy 0.52 980
macro avg 0.27 0.24 0.23 980
weighted avg 0.49 0.52 0.48 980
Accuracy_percentage: 70.3061224489796
Classification Report:
precision recall f1-score support
3 0.00 0.00 0.00 5
4 0.75 0.36 0.49 25
5 0.71 0.69 0.70 291
6 0.66 0.80 0.73 432
7 0.78 0.62 0.70 192
8 0.94 0.43 0.59 35
accuracy 0.70 980
macro avg 0.64 0.48 0.53 980
weighted avg 0.71 0.70 0.70 980
Akshay Praneeth Email me