-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlighthouse_EKF_python.py
776 lines (590 loc) · 31.5 KB
/
lighthouse_EKF_python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
import numpy as np
import math
import matplotlib.pyplot as plt
import enum
PI = 3.1415927 # constant
class DroneType(enum.Enum):
lighthouse_robot = enum.auto() # localizing itself and localizing anchor robots
measurement_robot = enum.auto() # only taking measurements
anchor_robot = enum.auto() # in place, acts as an anchor point
class Drone:
def __init__(self, x=5, y=5, theta=0, vx=0, vy=0, drone_type=DroneType.measurement_robot):
self.drone_type = drone_type
self.t = np.linspace(0, timesteps * dt, timesteps)
# initialize real ax, ay, omega
self.ax = np.full(timesteps, .1)
self.ax[0] = 1
self.ay = np.zeros(timesteps)
self.omega = np.full(timesteps, 2)
self.omega_m = []
self.ax_m = []
self.ay_m = []
# actual starting position of drone: x, y, theta, vx, vy
self.state_truth_arr = [StateTruth(x, y, theta, vx, vy)]
self.state_truth_vec = self.state_truth_arr[0].vectorize()[:, None]
self.sig_x0 = 0.05 # initial uncertainty of x
self.sig_y0 = 0.05 # initial uncertainty of y
self.sig_th0 = 0.01 # initial uncertainty of theta
self.sig_vx0 = 0.001 # initial uncertainty of vx
self.sig_vy0 = 0.001 # initial uncertainty of vy
# covariance of measurements
self.Pm = [np.diag([self.sig_x0, self.sig_y0, self.sig_th0, self.sig_vx0, self.sig_vy0])]
# initial measured starting position
# TODO: Figure out dimensions of xm_vec (whether it should be 2D or 1D)
self.xm_vec = self.state_truth_vec + np.dot(np.random.rand(1, len(self.state_truth_vec)), self.Pm[0]).T
self.xm_obj = [StateTruth(self.xm_vec[0][0], self.xm_vec[1][0], self.xm_vec[2][0], self.xm_vec[3][0],
self.xm_vec[4][0])]
# lighthouse_available = False # default variable
self.anchor_counter = 0 # TODO: Is this necessary?
self.meas_record = [[0, 0, 0, 0]]
self.Pp = [np.zeros((5, 5))]
# TODO: these are directly copied from anchor_sim but not sure if this is best place for them
self.K_rx = self.K_ry = self.K_lx = self.K_ly = [0]
self.D, self.V = np.linalg.eig(self.Pm[0])
self.D = np.diag(self.D)[:, :, None]
self.V = self.V[:, :, None]
self.r_diffx = []
self.r_diffy = []
self.last_direction = np.array([0, 0])[:, None]
self.error = []
def default_lighthouse_move(self):
assert self.drone_type == DroneType.lighthouse_robot
self.state_truth_arr.append(StateTruth.step_dynamics_ekf(self.state_truth_arr[k - 1], self.omega[k - 1],
self.ax[k - 1], self.ay[k - 1], dt))
self.state_truth_vec = np.hstack((self.state_truth_vec,
StateTruth.vectorize(self.state_truth_arr[k])[:, None]))
# Prior update/Prediction step
# Calculate Xp using previous measured x (aka xm)
xp_obj = StateTruth.step_dynamics_ekf(self.xm_obj[k - 1], self.omega_m[k - 1], self.ax_m[k - 1],
self.ay_m[k - 1], dt)
xp_vec = StateTruth.vectorize(xp_obj)
return xp_obj, xp_vec
def lighthouse_with_anchor_drone_move(self, anchor_drone):
d = np.linalg.norm(anchor_drone.xm_vec[0:2, k - 1] - self.state_truth_vec[0:2, k - 1])
angle = np.arctan2(anchor_drone.xm_vec[1, k - 1] - self.state_truth_vec[1, k - 1], anchor_drone.xm_vec[0, k - 1]
- self.state_truth_vec[0, k - 1])
Hp = (1 / d) * np.array([[np.sin(angle), -np.cos(angle)]])
# -10*(x_m(1,i-1)-(x_l(i-1)))/(log(10)* d), -10*(x_m(2,i-1)-(y_l(i-1)))/(log(10)* d)];
Rp = np.diag([np.power(sig1, 2)])
fim = np.matmul(Hp.T / np.linalg.inv(Rp), Hp)
lam, v = np.linalg.eig(fim)
lam = np.diag(lam)
if lam[0, 0] >= lam[1, 1]:
direction = v[:, 0]
else:
direction = v[:, 1]
# dot = np.matmul(np.transpose(direction), self.last_direction)
if (np.matmul(np.transpose(direction), self.last_direction)) < 0:
direction = -direction
self.last_direction = direction
# x_l(i) = x_l(i-1)+ u_l(1,max_idx);
# y_l(i) = y_l(i-1)+ u_l(2,max_idx);
self.state_truth_arr.append(StateTruth(self.state_truth_vec[0, k - 1] + direction[0],
self.state_truth_vec[1, k - 1] + direction[1]))
self.state_truth_vec = np.hstack((self.state_truth_vec, StateTruth.vectorize(self.state_truth_arr[k])[:, None]))
return self.state_truth_arr[k], self.state_truth_vec[:, k]
def change_to_lighthouse(self):
self.drone_type = DroneType.lighthouse_robot
self.Pm[k - 1][2][2] = self.sig_th0
self.Pm[k - 1][3][3] = self.sig_vx0
self.Pm[k - 1][4][4] = self.sig_vy0
def run_lighthouse(self, k):
if self.drone_type != DroneType.lighthouse_robot:
self.change_to_lighthouse()
assert k >= 1
# corrupt IMU inputs with noise (aka sensor measurements will have some noise)
self.omega_m.append(self.omega[k - 1] + np.random.randn() * omega_n)
self.ax_m.append(self.ax[k - 1] + np.random.randn() * ax_n)
self.ay_m.append(self.ay[k - 1] + np.random.randn() * ay_n)
# step true state and save its vector
# TODO: Fill the if part in, replacing the default lighthouse move
if len(anchor_drones) > 0:
# anchor = anchor_drones[0] # TODO: fix this
# xp_obj, xp_vec = self.lighthouse_with_anchor_drone_move(anchor)
self.xp_obj, xp_vec = self.default_lighthouse_move()
else:
self.xp_obj, xp_vec = self.default_lighthouse_move()
# sig_l = 0.0001 # Default variable
# Calculate A(k-1)
A = [[1, 0, 0, dt, 0],
[0, 1, 0, 0, dt],
[0, 0, 1, 0, 0],
[0, 0, (-math.sin(self.xm_obj[k - 1].theta) * self.ax_m[k - 1] - math.cos(self.xm_obj[k - 1].theta) *
self.ay_m[k - 1]) * dt, 1, 0],
[0, 0, (math.cos(self.xm_obj[k - 1].theta) * self.ax_m[k - 1] - math.sin(self.xm_obj[k - 1].theta) *
self.ay_m[k - 1]) * dt, 0, 1]]
# linearized prediction for debugging
# x_lin = A * xm_vec(:,k-1) + xm_vec(:,k-1)
# Calculate L(k-1)
L = [[dt, 0, 0, 0, 0],
[0, dt, 0, 0, 0],
[0, 0, dt, 0, 0],
[0, 0, 0, -dt * math.sin(self.xm_obj[k - 1].theta), -dt * math.cos(self.xm_obj[k - 1].theta)],
[0, 0, 0, dt * math.cos(self.xm_obj[k - 1].theta), -dt * math.sin(self.xm_obj[k - 1].theta)]]
# calculate Pp(k)
self.Pp.append(np.dot(np.dot(A, self.Pm[k - 1]), np.transpose(A)) + np.dot(np.dot(L, Q),
np.transpose(L)))
# decide whether the lighthouse robot is crossing an anchor
lighthouse_available, phi, self.meas_record = compute_anchor_meas(self.state_truth_arr[k],
self.state_truth_arr[k - 1],
self.meas_record, self.xp_obj)
# decide if lighthouse measurement is available
# if mod(k*dt, lighthouse_dt)==0
if lighthouse_available:
# lighthouse measurement is available
# choose anchor
# currently useless, I guess we can just keep track of which anchor?
self.anchor_counter = (self.anchor_counter + 1) % n_anchors
x_a = self.meas_record[len(self.meas_record) - 1][2]
y_a = self.meas_record[len(self.meas_record) - 1][3]
# calculate noise corrupted measurement
c_noise = np.random.randn() * compass_n # compass noise
l_noise = np.random.randn() * math.sqrt(self.Pp[k - 1][2][2]) # lighthouse noise
sig_l = math.sqrt(self.Pp[k - 1][2][2])
# l_noise = randn * compass_n
# l_noise = xp_obj.theta - phi # this is the actual error of lighthouse i believe
z = np.array([[((phi + l_noise + PI) % (2 * PI)) - PI],
[((self.state_truth_arr[k].theta + c_noise + PI) % (2 * PI)) - PI]])
# calculate H
# TODO: Switch to transposing function
r = np.linalg.norm(np.array([xp_vec[0:2]]).T - [[x_a], [y_a]])
angle = np.arctan2(self.xp_obj.y - y_a, self.xp_obj.x - x_a)
H_mat = np.array([[-np.sin(angle) / r, np.cos(angle) / r, 0, 0, 0],
[0, 0, 1, 0, 0]])
# calculate M. I could potentially add two more entries: var(x_a), var(y_a)
M = np.array([[1, 0], [0, 1]])
# calculate zhat
zhat = np.array([[angle], [self.xp_obj.theta]])
# calculate R(noise covariance matrix)
compass_w = 0.001 * 0.001
R_mat = [[sig_l * sig_l, 0], [0, compass_w]]
# Kalman gain
# TODO: Switch to transposing function
kalman_gain = np.dot(np.dot(self.Pp[k], H_mat.T), np.linalg.inv(
np.dot(np.dot(H_mat, self.Pp[k]), H_mat.T) + np.dot(np.dot(M, R_mat), M.T)))
else:
# calc noise corrupted measurement
c_noise = np.random.rand() * compass_n
z = [((self.state_truth_arr[k].theta + c_noise + PI) % (2 * PI)) - PI]
# calc zhat
zhat = [self.xp_obj.theta]
# calculate H
H_mat = np.array([[0, 0, 1, 0, 0]])
# calc M
M = 1
# calc R
compass_w = 0.001 * 0.001
R_mat = compass_w
# Kalman gain
# TODO: Switch to transposing function
kalman_gain = np.dot(np.dot(self.Pp[k], H_mat.T),
np.linalg.inv([np.dot(np.dot(H_mat, self.Pp[k])[0], H_mat.T) + M * R_mat * M]))
# xm
# calculate measurement diff in order to wrap angles
diff = []
if lighthouse_available:
diff.append(z[0] - zhat[0])
diff.append(z[1] - zhat[1])
diff[0] = ((diff[0] + PI) % (2 * PI)) - PI
diff[1] = ((diff[1] + PI) % (2 * PI)) - PI
else:
diff.append(z[0] - zhat[0])
diff[0] = ((diff[0] + PI) % (2 * PI)) - PI
# TODO: Switch to transposing function
xp_vec_trans = np.array([xp_vec[:]]).T
k_diff_trans = np.dot(kalman_gain, diff)
# TODO: Switch to transposing function
if len(np.shape(k_diff_trans)) == 1:
k_diff_trans = np.array([k_diff_trans]).T
add_xm_vec = np.array(xp_vec_trans + k_diff_trans)
self.xm_vec = np.hstack((self.xm_vec, add_xm_vec))
self.xm_obj.append(StateTruth.devectorize(self.xm_vec[:, k]))
# Pm
self.Pm.append(np.dot(np.eye(5) - np.dot(kalman_gain, H_mat), self.Pp[k]))
# calculates anchor measurements based on the true theta state of the
# robot. X_a is the set of anchor point locations.
def run_anchor(self, k):
assert k >= 1
if self.drone_type != DroneType.anchor_robot:
self.change_to_anchor()
self.state_truth_arr.append(self.state_truth_arr[k-1])
self.state_truth_vec = np.hstack((self.state_truth_vec,
StateTruth.vectorize(self.state_truth_arr[k])[:, None]))
xp_vec = self.xm_vec[0:2, k-1]
self.xp_obj = StateTruth.devectorize(np.hstack((xp_vec, [0,0,0])))
self.Pp.append(self.Pm[k-1])
lighthouse_available, z, self.meas_record = compute_lighthouse_meas(self.state_truth_arr[k], self.state_truth_arr[k-1], self.meas_record, self.xp_obj)
if lighthouse_available:
h = np.arctan2(xp_vec[1] - self.meas_record[-1][3], xp_vec[0] - self.meas_record[-1][2])
lighthouse_xy = self.meas_record[-1][2:]
r = np.linalg.norm(xp_vec - lighthouse_xy)
angle = ((np.arctan2(xp_vec[1] - lighthouse_xy[1], xp_vec[0] - lighthouse_xy[0]) + PI) % (2*PI)) - PI
H = (1/r) * np.array([-np.sin(angle), np.cos(angle)])
# H = [-(x_p(2,i)-y_l(i))/norm(x_p(:,i)-X_l(:,i))^2 , (x_p(1,i)-x_l(i))/norm(x_p(:,i)-X_l(:,i))^2;
# -10*(x_p(1,i)-x_l(i))/(log(10)* norm(x_p(:,i)-X_l(:,i))^2), -10*(x_p(2,i)-y_l(i))/(log(10)* norm(x_p(:,i)-X_l(:,i))^2)];
W = np.array([[(xp_vec[1] - lighthouse_xy[1]) / np.power(np.linalg.norm(xp_vec - lighthouse_xy), 2), -(xp_vec[0] - lighthouse_xy[0]) / np.power(np.linalg.norm(xp_vec- lighthouse_xy), 2), 1, 0],
[10 * (xp_vec[0] - lighthouse_xy[0]) / (np.log(10) * np.power(np.linalg.norm(xp_vec- lighthouse_xy), 2)), 10*(xp_vec[1]-lighthouse_xy[1]) / (np.log(10) * np.power(np.linalg.norm(xp_vec- lighthouse_xy), 2)), 0 ,1]])
R = np.array([np.append(P_l[0,:],[0]),
np.append(P_l[1,:], [0]),
np.append(P_l[2,:], [0]),
[0,0,0,sig4**2]])
K = self.Pp[k][0:2, 0:2] @ H.T @ np.linalg.inv(H @ self.Pp[k][0:2, 0:2] @ H.T + W @ R @ W.T)
K = K[:,None]
# is the kalman gain helpful?
z_h_diff = ((z-h + PI) % (2*PI)) - PI
new_xm_xy = np.array(xp_vec[:,None] + K * z_h_diff)
new_xm = np.append(new_xm_xy, np.zeros((3,1)), axis=0)
self.xm_vec = np.append(self.xm_vec, new_xm, axis=1)
self.xm_obj.append(StateTruth(self.xm_vec[0,k], self.xm_vec[1,k], self.xm_vec[2,k], self.xm_vec[3,k], self.xm_vec[4,k]))
new_Pm = np.zeros((5,5))
new_Pm[0:2, 0:2] = np.array((np.identity(2) - K @ np.array([H])) @ self.Pp[k][0:2, 0:2])
self.Pm.append(new_Pm)
else:
self.xm_vec = np.append(self.xm_vec, self.xm_vec[:, -1][:,None], axis=1)
self.xm_obj.append(self.xm_obj[-1])
self.Pm.append(self.Pm[-1])
# self.K_rx.append(K[0,1])
# self.K_ry.append(K[1,1])
# self.K_lx.append(K[0,0])
# self.K_ly.append(K[1,0])
# self.r_diffx.append(K[0,1]*(z[1]-h[1]))
# self.r_diffy.append(K[1,1]*(z[1]-h[1]))
# tempD, tempV = np.linalg.eig(self.Pm[k])
# self.V = np.append(self.V, tempV)
# self.D = np.append(self.D, np.diag(tempD))
def change_to_anchor(self):
self.drone_type = DroneType.anchor_robot
self.Pm[k - 1][2][2] = 0
self.Pm[k - 1][3][3] = 0
self.Pm[k - 1][4][4] = 0
self.xm_vec[2] = 0
self.xm_vec[3] = 0
self.xm_vec[4] = 0
self.xm_obj[k - 1] = StateTruth(self.xm_vec[0], self.xm_vec[1], self.xm_vec[2], self.xm_vec[3], self.xm_vec[4])
def measurement_move(self):
assert self.drone_type == DroneType.measurement_robot
self.state_truth_arr.append(StateTruth.step_dynamics_ekf(self.state_truth_arr[k - 1], self.omega[k - 1],
self.ax[k - 1], self.ay[k - 1], dt))
self.state_truth_vec = np.hstack((self.state_truth_vec,
StateTruth.vectorize(self.state_truth_arr[k])[:, None]))
# Prior update/Prediction step
# Calculate Xp using previous measured x (aka xm)
xp_obj = StateTruth.step_dynamics_ekf(self.xm_obj[k - 1], self.omega_m[k - 1], self.ax_m[k - 1],
self.ay_m[k - 1], dt)
xp_vec = StateTruth.vectorize(xp_obj)
return xp_obj, xp_vec
def change_to_measurement(self):
self.drone_type = DroneType.measurement_robot
def run_measurement(self, k):
if self.drone_type != DroneType.measurement_robot:
self.change_to_measurement()
assert k >= 1
# corrupt IMU inputs with noise (aka sensor measurements will have some noise)
self.omega_m.append(self.omega[k - 1] + np.random.randn() * omega_n)
self.ax_m.append(self.ax[k - 1] + np.random.randn() * ax_n)
self.ay_m.append(self.ay[k - 1] + np.random.randn() * ay_n)
# step true state and save its vector
self.xp_obj, xp_vec = self.measurement_move()
# sig_l = 0.0001 # Default variable
# Calculate A(k-1)
A = [[1, 0, 0, dt, 0],
[0, 1, 0, 0, dt],
[0, 0, 1, 0, 0],
[0, 0, (-math.sin(self.xm_obj[k - 1].theta) * self.ax_m[k - 1] - math.cos(self.xm_obj[k - 1].theta) *
self.ay_m[k - 1]) * dt, 1, 0],
[0, 0, (math.cos(self.xm_obj[k - 1].theta) * self.ax_m[k - 1] - math.sin(self.xm_obj[k - 1].theta) *
self.ay_m[k - 1]) * dt, 0, 1]]
# linearized prediction for debugging
# x_lin = A * xm_vec(:,k-1) + xm_vec(:,k-1)
# Calculate L(k-1)
L = [[dt, 0, 0, 0, 0],
[0, dt, 0, 0, 0],
[0, 0, dt, 0, 0],
[0, 0, 0, -dt * math.sin(self.xm_obj[k - 1].theta), -dt * math.cos(self.xm_obj[k - 1].theta)],
[0, 0, 0, dt * math.cos(self.xm_obj[k - 1].theta), -dt * math.sin(self.xm_obj[k - 1].theta)]]
# calculate Pp(k)
self.Pp.append(np.dot(np.dot(A, self.Pm[k - 1]), np.transpose(A)) + np.dot(np.dot(L, Q),
np.transpose(L)))
# decide whether the lighthouse robot is crossing an anchor
lighthouse_available, phi, self.meas_record = compute_lighthouse_meas(self.state_truth_arr[k],
self.state_truth_arr[k - 1],
self.meas_record, self.xp_obj)
# decide if lighthouse measurement is available
# if mod(k*dt, lighthouse_dt)==0
if lighthouse_available:
# lighthouse measurement is available
# choose lighthouse location
x_a = self.meas_record[len(self.meas_record) - 1][2]
y_a = self.meas_record[len(self.meas_record) - 1][3]
# calculate noise corrupted measurement
c_noise = np.random.randn() * compass_n # compass noise
l_noise = np.random.randn() * math.sqrt(self.Pp[k - 1][2][2]) # lighthouse noise
sig_l = math.sqrt(self.Pp[k - 1][2][2])
# l_noise = randn * compass_n
# l_noise = xp_obj.theta - phi # this is the actual error of lighthouse i believe
z = np.array([[((phi + l_noise + PI) % (2 * PI)) - PI],
[((self.state_truth_arr[k].theta + c_noise + PI) % (2 * PI)) - PI]])
# calculate H
# TODO: Switch to transposing function
r = np.linalg.norm(np.array([xp_vec[0:2]]).T - [[x_a], [y_a]])
angle = np.arctan2(self.xp_obj.y - y_a, self.xp_obj.x - x_a)
H_mat = np.array([[-np.sin(angle) / r, np.cos(angle) / r, 0, 0, 0],
[0, 0, 1, 0, 0]])
# calculate M. I could potentially add two more entries: var(x_a), var(y_a)
M = np.array([[1, 0], [0, 1]])
# calculate zhat
zhat = np.array([[angle], [self.xp_obj.theta]])
# calculate R(noise covariance matrix)
compass_w = 0.001 * 0.001
R_mat = [[sig_l * sig_l, 0], [0, compass_w]]
# Kalman gain
# TODO: Switch to transposing function
kalman_gain = np.dot(np.dot(self.Pp[k], H_mat.T), np.linalg.inv(
np.dot(np.dot(H_mat, self.Pp[k]), H_mat.T) + np.dot(np.dot(M, R_mat), M.T)))
else:
# calc noise corrupted measurement
c_noise = np.random.rand() * compass_n
z = [((self.state_truth_arr[k].theta + c_noise + PI) % (2 * PI)) - PI]
# calc zhat
zhat = [self.xp_obj.theta]
# calculate H
H_mat = np.array([[0, 0, 1, 0, 0]])
# calc M
M = 1
# calc R
compass_w = 0.001 * 0.001
R_mat = compass_w
# Kalman gain
# TODO: Switch to transposing function
kalman_gain = np.dot(np.dot(self.Pp[k], H_mat.T),
np.linalg.inv([np.dot(np.dot(H_mat, self.Pp[k])[0], H_mat.T) + M * R_mat * M]))
# xm
# calculate measurement diff in order to wrap angles
diff = []
if lighthouse_available:
diff.append(z[0] - zhat[0])
diff.append(z[1] - zhat[1])
diff[0] = ((diff[0] + PI) % (2 * PI)) - PI
diff[1] = ((diff[1] + PI) % (2 * PI)) - PI
else:
diff.append(z[0] - zhat[0])
diff[0] = ((diff[0] + PI) % (2 * PI)) - PI
# TODO: Switch to transposing function
xp_vec_trans = np.array([xp_vec[:]]).T
k_diff_trans = np.dot(kalman_gain, diff)
# TODO: Switch to transposing function
if len(np.shape(k_diff_trans)) == 1:
k_diff_trans = np.array([k_diff_trans]).T
add_xm_vec = np.array(xp_vec_trans + k_diff_trans)
self.xm_vec = np.hstack((self.xm_vec, add_xm_vec))
self.xm_obj.append(StateTruth.devectorize(self.xm_vec[:, k]))
# Pm
self.Pm.append(np.dot(np.eye(5) - np.dot(kalman_gain, H_mat), self.Pp[k]))
# calculates anchor measurements based on the true theta state of the
# robot. X_a is the set of anchor point locations.
# State Truth class
class StateTruth:
def __init__(self, x=0, y=0, theta=0, vx=0, vy=0):
self.x = x
self.y = y
self.theta = theta
self.vx = vx
self.vy = vy
def vectorize(self):
return np.array([self.x, self.y, self.theta, self.vx, self.vy])
def devectorize(state_vector):
return StateTruth(state_vector[0], state_vector[1], state_vector[2], state_vector[3], state_vector[4])
def step_dynamics_ekf(state_truth_prev, omega, ax, ay, dt):
# dynamic evolution function. Used for truth dynamics and for EKF prior
# updates
x = state_truth_prev.x + state_truth_prev.vx * dt
y = state_truth_prev.y + state_truth_prev.vy * dt
theta = (state_truth_prev.theta + dt * omega + 3.14159) % (2 * 3.14159) - 3.14159
vx = state_truth_prev.vx + (math.cos(state_truth_prev.theta) * ax - math.sin(state_truth_prev.theta) * ay) * dt
vy = state_truth_prev.vy + (math.sin(state_truth_prev.theta) * ax + math.cos(state_truth_prev.theta) * ay) * dt
return StateTruth(x, y, theta, vx, vy)
def perpindicular_step_dynamics(state_truth_prev, omega, ax, ay, dt):
# dynamic evolution function. Used for truth dynamics and for EKF prior
# updates
x = state_truth_prev.x + state_truth_prev.vx * dt
y = state_truth_prev.y + state_truth_prev.vy * dt
theta = (state_truth_prev.theta + dt * omega + 3.14159) % (2 * 3.14159) - 3.14159
vx = state_truth_prev.vx + (math.sin(state_truth_prev.theta) * ax + math.cos(state_truth_prev.theta) * ay) * dt
vy = state_truth_prev.vy + (math.cos(state_truth_prev.theta) * ax - math.sin(state_truth_prev.theta) * ay) * dt
return StateTruth(x, y, theta, vx, vy)
def compute_anchor_meas(state_truth, state_truth_prev, meas_record, state_estimate):
num_anchors = len(X_a)
x_column = X_a[:, 0]
y_column = X_a[:, 1]
# calculate headings to all anchor points
phis_k = np.arctan2(state_truth.y - y_column, state_truth.x - x_column)
# calculate headings to all anchor points from previous state
phis_prev = np.arctan2(state_truth_prev.y - y_column, state_truth_prev.x - x_column)
# calc anchor distances from robot
# This is unused so I don't know why it's here
# ds = np.linalg.norm(X_a - np.tile([state_truth.x,state_truth.y], (num_anchors, 1)), 2, 1)
# find a phi that matches current
phi_robot_k = (state_truth.theta + PI) % (2 * PI) - PI
phi_robot_vec_k = np.tile(phi_robot_k, (num_anchors, 1)) # stacked vector of robot orientation
phi_robot_prev = (state_truth_prev.theta + PI) % (2 * PI) - PI
phi_robot_vec_prev = np.tile(phi_robot_prev, (num_anchors, 1)) # stacked vector of robot orientation
# TODO: Switch to transposing function
if len(np.shape(phis_k)) == 1:
phis_k = np.array([phis_k]).T
phis_prev = np.array([phis_prev]).T
phi_product = np.multiply((phis_k - phi_robot_vec_k + PI) % (2 * PI) - PI,
(phis_prev - phi_robot_vec_prev + PI) % (2 * PI) - PI)
match_idx = phi_product <= 0
# match_idx = abs(phis_k - repmat(phi_robot_k,num_anchors,1)) < MATCH_THRESH
phi_matches = []
match_locs = []
# Add the location of the anchor it matched with
for i in range(len(match_idx)):
if match_idx[i][0]:
phi_matches.append(phis_k[i][0])
match_locs.append(X_a[i])
# If the robot didn't cross an anchor
if len(phi_matches) == 0:
lighthouse = False
phi_final = 100
# If the robot did cross an anchor
else:
lighthouse = True
# Store where we think the robot is and which anchor it crossed
meas_record.append([state_estimate.x, state_estimate.y,
match_locs[0][0], match_locs[0][1]]) # store measurement vector
phi_final = phi_matches[0]
return lighthouse, phi_final, meas_record
def compute_lighthouse_meas(state_truth, state_truth_prev, meas_record, state_estimate):
x_column = np.array([l.state_truth_arr[-1].x for l in lighthouse_drones])[:,None]
y_column = np.array([l.state_truth_arr[-1].y for l in lighthouse_drones])[:,None]
x_column_prev = np.array([l.state_truth_arr[-2].x for l in lighthouse_drones])[:,None]
y_column_prev = np.array([l.state_truth_arr[-2].y for l in lighthouse_drones])[:,None]
# calculate headings from all lighthouses to unknown anchor
# try switching y_column and state truth to fix bug
phis_k = np.arctan2(state_truth.y - y_column, state_truth.x - x_column)
# calculate headings from all lighthouses to unknown anchor from previous state
phis_prev = np.arctan2(state_truth_prev.y - y_column_prev , state_truth_prev.x - x_column_prev)
# calc anchor distances from robot
# This is unused so I don't know why it's here
# ds = np.linalg.norm(X_a - np.tile([state_truth.x,state_truth.y], (num_anchors, 1)), 2, 1)
# find a phi that matches current
phi_robot_vec_k = np.array([(l.state_truth_arr[-1].theta + PI) % (2 * PI) - PI for l in lighthouse_drones])[:,None]
phi_robot_vec_prev = np.array([(l.state_truth_arr[-2].theta + PI) % (2 * PI) - PI for l in lighthouse_drones])[:,None]
phi_product = np.multiply((phis_k - phi_robot_vec_k + PI) % (2 * PI) - PI,
(phis_prev - phi_robot_vec_prev + PI) % (2 * PI) - PI)
match_idx = phi_product <= 0
# if len(np.shape(match_idx)) == 1:
# match_idx = match_idx[:, None]
# match_idx = abs(phis_k - repmat(phi_robot_k,num_anchors,1)) < MATCH_THRESH
phi_matches = []
match_locs = []
# Add the location of the anchor it matched with
for i in range(len(match_idx)):
if match_idx[i][0]:
phi_matches.append(phis_k[i][0])
match_locs.append([lighthouse_drones[i].xp_obj.x, lighthouse_drones[i].xp_obj.y])
# If the robot didn't cross an anchor
if len(phi_matches) == 0:
lighthouse = False
phi_final = 100
# If the robot did cross an anchor
else:
lighthouse = True
# Store where we think the robot is and which lighthouse crossed it
meas_record.append([state_estimate.x, state_estimate.y,
match_locs[0][0], match_locs[0][1]]) # store measurement vector
# TODO: figure out noise integration
phi_final = phi_matches[0]
return lighthouse, phi_final, meas_record
num_drones = 4
iterations = 100
errors = []
plot_save = False
plot_run = True
for i in range(iterations):
timesteps = 5000
lighthouse_dt = .3 # UNUSED
dt = 0.01
P_l = np.diag([.05**2, .05**2, (1.5 * 3.1415 / 180)**2]) # covariance of lighthouse states
x_l_0 = 1 # UNUSED
y_l_0 = 1 # UNUSED
# anchor locations
n_anchors = 3
area_size = 10 # length of one side of potential experiment area in meters
X_a = np.random.rand(n_anchors, 2) * area_size # matrix of anchors in 2D
# X_a = np.array([[0.5773, 0.31849]])
# X_a(1,:) = [0.234076005284792,6.43920174599930]
# X_a = np.array([[0.5773, 0.31849], [0.234076005284792, 6.43920174599930], [4, 5]])
# noise standard deviations
ax_n = 0.08
ay_n = 0.08
omega_n = 0.01
light_n = 0.04
compass_n = 0.001
# Don't quite understand why this is * 10 instead of just inputting the number desired
g_x = 0.001 * 10 # standard deviations
g_y = 0.001 * 10
g_w = 0.001 * 10
g_ax = 0.08
g_ay = 0.08
sig1 = .05
sig2 = .05
sig3 = 1.5 * 3.1415 / 180
sig4 = 10
g = [g_x, g_y, g_w, g_ax, g_ay]
Q = np.diag(np.multiply(g, g))
meas_diff = [0] # UNUSED
light_noise = [0] # UNUSED
d1 = Drone()
d2 = Drone(x=7.5, y=7.5)
d3 = Drone(np.random.rand() * area_size, np.random.rand() * area_size)
d4 = Drone(x=7, y=3)
drones = [d1, d2, d3, d4]
lighthouse_drones = [d1, d4]
anchor_drones = [d3]
measurement_drones = [d2]
for k in range(1, timesteps):
for d in lighthouse_drones:
d.run_lighthouse(k)
for d in anchor_drones:
d.run_anchor(k)
for d in measurement_drones:
d.run_measurement(k)
if plot_save:
drone_errors = []
for d in drones:
drone_errors.append(np.linalg.norm(d.state_truth_vec[0:2, -1] - d.xm_vec[0:2, -1]))
plt.figure(i)
plt.scatter(X_a[:, 0], X_a[:, 1], color='black') # anchor points
plt.scatter(d.state_truth_vec[0, ::100], d.state_truth_vec[1, ::100], # state truths
linewidths=0.001, marker=".", color='m')
plt.plot(d.state_truth_vec[0, :], d.state_truth_vec[1, :], color='m')
plt.scatter(d.xm_vec[0, ::100], d.xm_vec[1, ::100], # measured paths
linewidths=0.001, marker=".", color='b')
plt.plot(d.xm_vec[0, :], d.xm_vec[1, :], color='b')
plt.scatter(d.state_truth_vec[0, 0], d.state_truth_vec[1, 0], color='g') # actual start points
plt.scatter(d.xm_vec[0, -1], d.xm_vec[1, -1], color='r') # measured endpoints
errors.append(drone_errors)
plt.savefig('plots/plot_%s' % i)
if plot_save:
for j in range(num_drones):
error = [drone_error[j] for drone_error in errors]
plt.figure()
plt.hist(error, 100)
plt.title('Error After 5000 Timesteps', fontsize = 20)
plt.xlabel('L2 Norm Error (m)', fontsize = 16)
plt.ylabel('Count', fontsize=16)
plt.savefig('plots/error_%s' % j)
if plot_run:
for d in drones:
plt.figure(1)
plt.scatter(X_a[:, 0], X_a[:, 1], color='black') # anchor points
plt.scatter(d.state_truth_vec[0, ::100], d.state_truth_vec[1, ::100], # state truths
linewidths=0.001, marker=".", color='m')
plt.plot(d.state_truth_vec[0, :], d.state_truth_vec[1, :], color='m')
plt.scatter(d.xm_vec[0, ::100], d.xm_vec[1, ::100], # measured paths
linewidths=0.001, marker=".", color='b')
plt.plot(d.xm_vec[0, :], d.xm_vec[1, :], color='b')
plt.scatter(d.state_truth_vec[0, 0], d.state_truth_vec[1, 0], color='g') # actual start points
plt.scatter(d.xm_vec[0, -1], d.xm_vec[1, -1], color='r') # measured endpoints