Skip to content

Commit

Permalink
Merge branch 'master' into teleportation-tutorial
Browse files Browse the repository at this point in the history
  • Loading branch information
KetpuntoG authored Sep 1, 2023
2 parents 05450a6 + 9bc3331 commit d118d9b
Show file tree
Hide file tree
Showing 12 changed files with 744 additions and 938 deletions.
6 changes: 3 additions & 3 deletions demonstrations/tutorial_QGAN.py
Original file line number Diff line number Diff line change
Expand Up @@ -204,7 +204,7 @@ def gen_cost(gen_weights):
# We begin by creating the optimizer:

opt = tf.keras.optimizers.SGD(0.4)

opt.build([disc_weights, gen_weights])

##############################################################################
# In the first stage of training, we optimize the discriminator while
Expand All @@ -213,7 +213,7 @@ def gen_cost(gen_weights):
cost = lambda: disc_cost(disc_weights)

for step in range(50):
opt.minimize(cost, disc_weights)
opt.minimize(cost, [disc_weights])
if step % 5 == 0:
cost_val = cost().numpy()
print("Step {}: cost = {}".format(step, cost_val))
Expand Down Expand Up @@ -243,7 +243,7 @@ def gen_cost(gen_weights):
cost = lambda: gen_cost(gen_weights)

for step in range(50):
opt.minimize(cost, gen_weights)
opt.minimize(cost, [gen_weights])
if step % 5 == 0:
cost_val = cost().numpy()
print("Step {}: cost = {}".format(step, cost_val))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
}
],
"dateOfPublication": "2021-03-02T00:00:00+00:00",
"dateOfLastModification": "2021-09-15T00:00:00+00:00",
"dateOfLastModification": "2023-08-28T00:00:00+00:00",
"categories": [
"Quantum Machine Learning"
],
Expand All @@ -19,7 +19,7 @@
],
"seoDescription": "Use a classical recurrent neural network to initilize the parameters of a variational quatum algorithm.",
"doi": "",
"canonicalURL": "/qml/demos/learning2learn",
"canonicalURL": "/qml/demos/tutorial_learning2learn",
"references": [],
"basedOnPapers": [],
"referencedByPapers": [],
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -119,9 +119,6 @@
Check out this great tutorial on
how to use QAOA for solving graph problems: https://pennylane.ai/qml/demos/tutorial_qaoa_intro.html
.. note::
Running the tutorial (excluding the Appendix) requires approx. ~13m.
"""

######################################################################
Expand Down Expand Up @@ -194,12 +191,6 @@ def generate_graphs(n_graphs, n_nodes, p_edge):

nx.draw(graphs[0])

######################################################################
# .. figure:: ../demonstrations/learning2learn/rendered_Graph0.png
# :align: center
# :width: 70%
# :target: javascript:void(0);
#

######################################################################
# Variational Quantum Circuit: QAOA
Expand Down Expand Up @@ -262,15 +253,6 @@ def hamiltonian(params, **kwargs):
# Evaluate th QAOA instance just created with some angles.
print(cost(x))

##############################################################################
# .. rst-class:: sphx-glr-script-out
#
# Out:
#
# .. code-block:: none
#
# tf.Tensor(-3.193267957255582, shape=(), dtype=float64)
#


######################################################################
Expand Down Expand Up @@ -476,46 +458,6 @@ def train_step(graph_cost):
print(f" > Graph {i+1}/{len(graph_cost_list)} - Loss: {loss[0][0]}")
print(f" >> Mean Loss during epoch: {np.mean(total_loss)}")

##############################################################################
# .. rst-class:: sphx-glr-script-out
#
# Out:
#
# .. code-block:: none
#
# Epoch 1
# > Graph 1/20 - Loss: -1.6641689538955688
# > Graph 6/20 - Loss: -1.4186843633651733
# > Graph 11/20 - Loss: -1.3757232427597046
# > Graph 16/20 - Loss: -1.294339656829834
# >> Mean Loss during epoch: -1.7352586269378663
# Epoch 2
# > Graph 1/20 - Loss: -2.119091749191284
# > Graph 6/20 - Loss: -1.4789190292358398
# > Graph 11/20 - Loss: -1.3779840469360352
# > Graph 16/20 - Loss: -1.2963457107543945
# >> Mean Loss during epoch: -1.8252217948436738
# Epoch 3
# > Graph 1/20 - Loss: -2.1322619915008545
# > Graph 6/20 - Loss: -1.459418535232544
# > Graph 11/20 - Loss: -1.390620470046997
# > Graph 16/20 - Loss: -1.3165746927261353
# >> Mean Loss during epoch: -1.8328069806098939
# Epoch 4
# > Graph 1/20 - Loss: -2.1432175636291504
# > Graph 6/20 - Loss: -1.476362943649292
# > Graph 11/20 - Loss: -1.3938289880752563
# > Graph 16/20 - Loss: -1.3140206336975098
# >> Mean Loss during epoch: -1.8369774043560028
# Epoch 5
# > Graph 1/20 - Loss: -2.1429405212402344
# > Graph 6/20 - Loss: -1.477513074874878
# > Graph 11/20 - Loss: -1.3909202814102173
# > Graph 16/20 - Loss: -1.315887689590454
# >> Mean Loss during epoch: -1.8371947884559632
#


######################################################################
# As you can see, the Loss for each graph keeps decreasing across epochs,
# indicating that the training routine is working correctly.
Expand All @@ -537,14 +479,6 @@ def train_step(graph_cost):

nx.draw(new_graph)

######################################################################
# .. figure:: ../demonstrations/learning2learn/rendered_Graph1.png
# :align: center
# :width: 70%
# :target: javascript:void(0);
#


######################################################################
# Then we apply the trained RNN to this new graph, saving intermediate
# results coming from all the recurrent iterations in the network.
Expand Down Expand Up @@ -589,11 +523,6 @@ def train_step(graph_cost):
plt.show()

######################################################################
# .. figure:: ../demonstrations/learning2learn/rendered_LossLSTM.png
# :align: center
# :width: 70%
# :target: javascript:void(0);
#
# That’s remarkable! The RNN learned to propose new parameters such that
# the MaxCut cost is minimized very rapidly: in just a few iterations the
# loss reaches a minimum. Actually, it takes just a single step for the LSTM
Expand Down Expand Up @@ -640,30 +569,6 @@ def train_step(graph_cost):
print(f"Final cost function: {new_cost(x).numpy()}\nOptimized angles: {x.numpy()}")

##############################################################################
# .. rst-class:: sphx-glr-script-out
#
# Out:
#
# .. code-block:: none
#
# Step 1 - Loss = -4.1700805
# Step 2 - Loss = -4.67503588
# Step 3 - Loss = -5.09949909
# Step 4 - Loss = -5.40388533
# Step 5 - Loss = -5.59529203
# Step 6 - Loss = -5.70495197
# Step 7 - Loss = -5.7642561
# Step 8 - Loss = -5.79533198
# Step 9 - Loss = -5.81138752
# Step 10 - Loss = -5.81966529
# Step 11 - Loss = -5.82396722
# Step 12 - Loss = -5.82624537
# Step 13 - Loss = -5.82749126
# Step 14 - Loss = -5.82820626
# Step 15 - Loss = -5.82864379
# Final cost function: -5.828932361904984
# Optimized angles: [[ 0.5865477 ]
# [-0.3228858]]
#

fig, ax = plt.subplots()
Expand All @@ -679,13 +584,6 @@ def train_step(graph_cost):
ax.set_xticks([0, 5, 10, 15, 20]);
plt.show()

######################################################################
# .. figure:: ../demonstrations/learning2learn/rendered_LossConfrontation.png
# :align: center
# :width: 70%
# :target: javascript:void(0);
#


######################################################################
# *Hurray!* 🎉🎉
Expand Down Expand Up @@ -852,30 +750,6 @@ def train_step(graph_cost):
print(f" > Graph {i+1}/{len(gs_cost_list)} - Loss: {loss}")
print(f" >> Mean Loss during epoch: {np.mean(total_loss)}")

##############################################################################
# .. rst-class:: sphx-glr-script-out
#
# Out:
#
# .. code-block:: none
#
# Epoch 1
# > Graph 1/15 - Loss: [[-1.4876363]]
# > Graph 6/15 - Loss: [[-1.8590403]]
# > Graph 11/15 - Loss: [[-1.7644017]]
# >> Mean Loss during epoch: -1.9704322338104248
# Epoch 2
# > Graph 1/15 - Loss: [[-1.8650053]]
# > Graph 6/15 - Loss: [[-1.9578737]]
# > Graph 11/15 - Loss: [[-1.8377447]]
# >> Mean Loss during epoch: -2.092947308222453
# Epoch 3
# > Graph 1/15 - Loss: [[-1.9009062]]
# > Graph 6/15 - Loss: [[-1.9726204]]
# > Graph 11/15 - Loss: [[-1.8668792]]
# >> Mean Loss during epoch: -2.1162660201390584
#


######################################################################
# Let’s check if this hybrid model eventually learned a good heuristic to
Expand All @@ -892,14 +766,6 @@ def train_step(graph_cost):

nx.draw(new_graph)

######################################################################
# .. figure:: ../demonstrations/learning2learn/rendered_Graph10.png
# :align: center
# :width: 70%
# :target: javascript:void(0);
#


######################################################################
# We call the trained recurrent LSTM on this graph, saving not only the
# last, but all intermediate guesses for the parameters.
Expand Down Expand Up @@ -933,14 +799,6 @@ def train_step(graph_cost):
ax.set_xticks([0, 5, 10, 15, 20]);
plt.show()

######################################################################
# .. figure:: ../demonstrations/learning2learn/rendered_LossGeneralization.png
# :align: center
# :width: 70%
# :target: javascript:void(0);
#


######################################################################
# Again, we can confirm that the custom optimizer based on the LSTM quickly reaches a good
# value of the loss function, and also achieve good generalization performances, since
Expand Down Expand Up @@ -988,13 +846,6 @@ def train_step(graph_cost):
plt.show()

######################################################################
# .. figure:: ../demonstrations/learning2learn/rendered_LossLandscape.png
# :align: center
# :width: 70%
# :target: javascript:void(0);
#
#
#
#
# Ideas for creating a Keras Layer and Keras Model
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Expand Down Expand Up @@ -1065,54 +916,6 @@ def call(self, inputs):

model.summary()


##############################################################################
# .. rst-class:: sphx-glr-script-out
#
# Out:
#
# .. code-block:: none
#
# Model: "functional_1"
# __________________________________________________________________________________________________
# Layer (type) Output Shape Param # Connected to
# ==================================================================================================
# input_1 (InputLayer) [(None, 1)] 0
# __________________________________________________________________________________________________
# input_2 (InputLayer) [(None, 2)] 0
# __________________________________________________________________________________________________
# input_3 (InputLayer) [(None, 2)] 0
# __________________________________________________________________________________________________
# input_4 (InputLayer) [(None, 2)] 0
# __________________________________________________________________________________________________
# qrnn (QRNN) [(1, 1), 48 input_1[0][0]
# (None, 2), input_2[0][0]
# (None, 2), input_3[0][0]
# (None, 2)] input_4[0][0]
# qrnn[0][0]
# qrnn[0][1]
# qrnn[0][2]
# qrnn[0][3]
# qrnn[1][0]
# qrnn[1][1]
# qrnn[1][2]
# qrnn[1][3]
# __________________________________________________________________________________________________
# tf.math.multiply (TFOpLambda) (1, 1) 0 qrnn[0][0]
# __________________________________________________________________________________________________
# tf.math.multiply_1 (TFOpLambda) (1, 1) 0 qrnn[1][0]
# __________________________________________________________________________________________________
# tf.math.multiply_2 (TFOpLambda) (1, 1) 0 qrnn[2][0]
# __________________________________________________________________________________________________
# average_147 (Average) (1, 1) 0 tf.math.multiply[0][0]
# tf.math.multiply_1[0][0]
# tf.math.multiply_2[0][0]
# ==================================================================================================
# Total params: 48
# Trainable params: 48
# Non-trainable params: 0
#

######################################################################
# A basic training routine for the ``Keras Model`` just created:
#
Expand Down Expand Up @@ -1145,26 +948,6 @@ def call(self, inputs):
for t, s in zip(pred, ["out0", "out1", "out2", "Loss"]):
print(f" >{s}: {t.numpy()}")

##############################################################################
# .. rst-class:: sphx-glr-script-out
#
# Out:
#
# .. code-block:: none
#
# Step 1 - Loss = [[-1.5563084]] - Cost = -4.762684301954701
# Step 2 - Loss = [[-1.5649065]] - Cost = -4.799981173473755
# Step 3 - Loss = [[-1.5741502]] - Cost = -4.840036354736862
# Step 4 - Loss = [[-1.5841404]] - Cost = -4.883246647056216
# Step 5 - Loss = [[-1.5948243]] - Cost = -4.929228976649736
# Final Loss: [[-1.5948243]]
# Final Outs:
# >out0: [[-0.01041588 0.01016874]]
# >out1: [[-0.04530389 0.38148248]]
# >out2: [[-0.10258182 0.4134117 ]]
# >Loss: [[-1.5948243]]
#

######################################################################
# .. note::
# This code works only for a single graph at a time, since a graph was
Expand Down
Loading

0 comments on commit d118d9b

Please sign in to comment.