forked from zhuliwen/RoadnetSZ
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnoise.py
36 lines (30 loc) · 1.06 KB
/
noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import numpy as np
import matplotlib.pyplot as plt
class OrnsteinUhlenbeckActionNoise:
def __init__(self, mu, sigma=0.2, theta=0.15, dt=1e-2, x0=None):
self.theta = theta
self.mu = mu
self.sigma = sigma
self.dt = dt
self.x0 = x0
self.reset()
def __call__(self):
x = self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + \
self.sigma * np.sqrt(self.dt) * np.random.normal(size=self.mu.shape)
self.x_prev = x
return x
def reset(self):
self.x_prev = self.x0 if self.x0 is not None else np.zeros_like(self.mu)
def __repr__(self):
return 'OrnsteinUhlenbeckActionNoise(mu={}, sigma={})'.format(self.mu, self.sigma)
def main():
# ou_noise=OrnsteinUhlenbeckActionNoise(mu=np.zeros(2), sigma=0.5)
start = 0.25*np.random.normal(size=(2,))
ou_noise=OrnsteinUhlenbeckActionNoise(mu=start, sigma=0.25, x0=start)
plt.figure('data')
y=[]
t=np.linspace(0,100,1000)
for _ in t:
y.append(ou_noise())
plt.plot(t,y)
plt.show()