Skip to content

PKU-RL/RoadnetSZ

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RoadnetSZ: Road networks and traffic flows in Shenzhen

GitHub last commit issues

In this repository, we release the Shenzhen dataset and code for multi-agent traffic signal control.

  • Dataset. We provide two versions that can run on both SUMO and CityFlow platforms.
  • Code. We provide three RL-based methods as baselines.

Table of contents

Open Datasets

# Name Platform Figure Dataset
1 Fuhua (hilight) CityFlow 1 Roadnet:
roadnet_1_33.json
Flow:
anon_1_33_fuhua_24hto1w_2490.json
anon_1_33_fuhua_4_27_24hto1w_4089.json
2 Fuhua (metavim) CityFlow 1 Roadnet:
fuhua_cityflow.json
Flow:
fuhua_real_1775.json
fuhua_2570.json
fuhua_4770.json
3 FuTian SUMO 2 FuTian.net.xml
FuTian.edg.xml
FuTian.nod.xml
FuTian.tll.xml
FuTian.typ.xml
FuTian.con.xml
4 BaoAn SUMO 3 BaoAn.net.xml
BaoAn.edg.xml
BaoAn.nod.xml
BaoAn.tll.xml
BaoAn.typ.xml
BaoAn.con.xml
5 PCL SUMO 3 pcl.net.xml
pcl.edg.xml
pcl.nod.xml
pcl.tll.xml
pcl.typ.xml
pcl.con.xml
pcl.trips.xml
pcl.sumocfg

Code list

# Title Figure Code Tutorial
1 Hierarchically and Cooperatively Learning Traffic Signal Control 1 code tutorial
2 MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control 2 code tutorial
3 Learning To Share In Multi-Agent Reinforcement Learning 3 code tutorial

Cite

If you use Shenzhen Dataset in your work, please cite it as follows:

@misc{RoadnetSZ,
	title = {RoadnetSZ},
	author = {Bingyu, Xu and Liwen, Zhu and Yuxuan, Yi and Zongqing, Lu and other contributors},
	year = {2022},
	howpublished = {\url{https://github.com/zhuliwen/PKU_Traffic_Lights}},
	note = {Accessed: 2022-05-01},
}

@inproceedings{xu2021hierarchically,
  title={Hierarchically and cooperatively learning traffic signal control},
  author={Xu, Bingyu and Wang, Yaowei and Wang, Zhaozhi and Jia, Huizhu and Lu, Zongqing},
  booktitle={AAAI Conference on Artificial Intelligence},
  year={2021}
}

@inproceedings{yi2022learning,
  title={Learning to Share in Multi-Agent Reinforcement Learning},
  author={Yi, Yuxuan and Li, Ge and Wang, Yaowei and Lu, Zongqing},
  booktitle={Advances in Neural Information Processing Systems},
  year={2022}
}

@article{zhu2023variationally,
  title={MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control},
  author={Zhu, Liwen and Peng, Peixi and Lu, Zongqing and Tian, Yonghong},
  journal={IEEE Transactions on Knowledge and Data Engineering, online},
  year={2023}
}


About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.6%
  • Other 0.4%