In this repository, we release the Shenzhen dataset and code for multi-agent traffic signal control.
- Dataset. We provide two versions that can run on both SUMO and CityFlow platforms.
- Code. We provide three RL-based methods as baselines.
# | Name | Platform | Figure | Dataset |
---|---|---|---|---|
1 | Fuhua (hilight) | CityFlow | Roadnet: roadnet_1_33.json Flow: anon_1_33_fuhua_24hto1w_2490.json anon_1_33_fuhua_4_27_24hto1w_4089.json |
|
2 | Fuhua (metavim) | CityFlow | Roadnet: fuhua_cityflow.json Flow: fuhua_real_1775.json fuhua_2570.json fuhua_4770.json |
|
3 | FuTian | SUMO | FuTian.net.xml FuTian.edg.xml FuTian.nod.xml FuTian.tll.xml FuTian.typ.xml FuTian.con.xml |
|
4 | BaoAn | SUMO | BaoAn.net.xml BaoAn.edg.xml BaoAn.nod.xml BaoAn.tll.xml BaoAn.typ.xml BaoAn.con.xml |
|
5 | PCL | SUMO | pcl.net.xml pcl.edg.xml pcl.nod.xml pcl.tll.xml pcl.typ.xml pcl.con.xml pcl.trips.xml pcl.sumocfg |
If you use Shenzhen Dataset in your work, please cite it as follows:
@misc{RoadnetSZ,
title = {RoadnetSZ},
author = {Bingyu, Xu and Liwen, Zhu and Yuxuan, Yi and Zongqing, Lu and other contributors},
year = {2022},
howpublished = {\url{https://github.com/zhuliwen/PKU_Traffic_Lights}},
note = {Accessed: 2022-05-01},
}
@inproceedings{xu2021hierarchically,
title={Hierarchically and cooperatively learning traffic signal control},
author={Xu, Bingyu and Wang, Yaowei and Wang, Zhaozhi and Jia, Huizhu and Lu, Zongqing},
booktitle={AAAI Conference on Artificial Intelligence},
year={2021}
}
@inproceedings{yi2022learning,
title={Learning to Share in Multi-Agent Reinforcement Learning},
author={Yi, Yuxuan and Li, Ge and Wang, Yaowei and Lu, Zongqing},
booktitle={Advances in Neural Information Processing Systems},
year={2022}
}
@article{zhu2023variationally,
title={MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control},
author={Zhu, Liwen and Peng, Peixi and Lu, Zongqing and Tian, Yonghong},
journal={IEEE Transactions on Knowledge and Data Engineering, online},
year={2023}
}