Skip to content

Cell Decoder: Decoding cell identity with multi-scale explainable deep learning

License

Notifications You must be signed in to change notification settings

PHOENIXcenter/CellDecoder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cell Decoder: Decoding cell identity with multi-scale explainable deep learning

Workflow

Package: celldecoder

We created the python package called celldecoder that that decoding cell identity from gene expressions by explicitly modeling the multi-scale biological interactions, i.e., genes, pathways, and biological processes.

Requirements

  • Python >= 3.8
  • torch == 2.0.1
  • torch-geometric == 2.3.1
  • CUDA 11.7

Create environment

conda create -n celldecoder python=3.8
conda activate celldecoder
conda install pytorch=2.0.1 cudatoolkit=11.7 -c pytorch
pip install torch_geometric
pip install torch_scatter torch_sparse torch_cluster -f https://data.pyg.org/whl/torch-2.0.0+cu117.html

Installation

The celldecoder python package is in the folder celldecoder. You can simply install it from the root of this repository using

pip install .

Environment has been tested

environment.yml

Usage

Step 1: Constructing the model

Domain knowledge

Building the model requires the use of prior knowledge. Ensure the creation of 2 directories at the software's location: /data/ppi and /data/reactome. The corresponding data can be downloaded from https://figshare.com/articles/dataset/PPI_data/24921831.

  • hierarchy: gene-pathway mapping & hierarchy pathway information
  • ppi: protein-protein interactions network
from celldecoder.data import interactions,hierarchy
import json
#hierarchy
n_layers = 3 # n layers of the model
reactome = hierarchy.hierarchy_layer(species='HSA') #HSA: human,MMU:mouse  
layers = reactome.get_layers(n_levels=n_layers)
ref_adata.uns['hierarchy'] = json.dumps(layers) 
query_adata.uns['hierarchy'] = json.dumps(layers)
#ppi
ref_adata = interactions.data_mapping_ppi(ref_adata,ppi_data) #ppi_data: ppi network

Input:

  • data: an AnnData object of reference data and query data (checkout reference and query have the same feature)

  • ppi_data : pre-prepared ppi networks data

    Domain knowledge files

  • ./data/ppi: human & mouse processed ppi data

  • ./data/reactome: hierarchy pathway information

Step 2: Training the model

import celldecoder
dataset = "./data/hBone/hBone_ref_adata.h5ad"
device_id = 1
log_dir = f"./log/{dataset}"
# Train the cell decoder using the specified dataset `dataset` on the device `device_id`,
# logging to the specified directory `log_dir`, and using the `cell_label` parameter to specify the cell type label.
celldecoder.train(dataset=dataset, device_id=device_id, log_dir=log_dir, cell_label="cell_type")

Input:

  • dataset: dataset name
  • log_dir : logging directory
  • device_id: gpu device id

See other arguments in celldecoder/config.py

Output:

  • ./log_dir/args.json : configuration file
  • ./log_dir/best.pth : best checkpoint weights

See command output for validation metrics.

Step 3: Prediect by the model

import celldecoder
device_id = 1
log_dir = f"./log/hBone"
dataset = "./data/hBone/hBone_query_adata.h5ad"
fn_process = "processed-test"
predict_type = 'cell'
cells = celldecoder.predict(dataset = dataset, device_id = device_id ,log_dir = log_dir, fn_process = fn_process, predict_type = predict_type)

Input:

  • dataset: dataset name
  • log_dir : logging directory
  • device_id: gpu device id

Output:

See command output for test metrics.

Step 4: Output embeddings by the model

import celldecoder
device_id = 1
log_dir = f"./log/hBone"
dataset = "./data/hBone/hBone_query_adata.h5ad"
fn_process = "processed-test"
celldecoder.embed(dataset = dataset, device_id = device_id ,log_dir = log_dir, out_embed = "output", fn_process = fn_process)

Input:

  • dataset: dataset name
  • log_dir : logging directory
  • device_id: gpu device id

Output:

Embeddings of the cells

Step 5: Output feature explanations by the model

import celldecoder
device_id = 1
log_dir = f"./log/hBone"
dataset = "./data/hBone/hBone_query_adata.h5ad"
fn_process = "processed-test"
celldecoder.explain_feature(dataset = dataset, device_id = device_id ,log_dir = log_dir, explain_method = "grad", fn_process = fn_process)

Input:

  • dataset: dataset name
  • log_dir : logging directory
  • device_id: gpu device id

Output:

Feature explanations of the cells

Step 6: Output ppi explanations by the model

import celldecoder
device_id = 1
log_dir = f"./log/hBone"
dataset = "./data/hBone/hBone_query_adata.h5ad"
fn_process = "processed-test"
exp_dict ={
    "correlation": 0,
    "multi_atten": 1,
    "train_sample_gt": 0,
    "ce_loss_gt": 0,
    "exp_train_epochs": 100,
    "exp_lr": 0.01,
}
celldecoder.explain_ppi(dataset = dataset, device_id = device_id ,log_dir = log_dir, fn_process = fn_process, **exp_dict)

Input:

  • dataset: dataset name
  • log_dir : logging directory
  • device_id: gpu device id

Output:

PPI explanations of the cells

Example Demo:

Guided Tutorial

Cite Cell Decoder:

Zhu et al. Decoding cell identity with multi-scale explainable deep learning. bioRxiv 2024.02.05.578922

[https://doi.org/10.1101/2024.02.05.578922]

About

Cell Decoder: Decoding cell identity with multi-scale explainable deep learning

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •