Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Zfhe #40

Merged
merged 7 commits into from
Jul 30, 2024
Merged

Zfhe #40

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions src/lm_saes/activation/token_source.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,13 +116,13 @@ def _process_dataset(dataset_path: str, cfg: TextDatasetConfig):
if dist.is_initialized():
shard_id = dist.get_rank()
shard = dataset.shard(
num_shards=dist.get_world_size(), index=shard_id
num_shards=dist.get_world_size(), index=shard_id, contiguous=True
)
else:
shard = dataset


dataloader = DataLoader(shard, batch_size=cfg.store_batch_size)
dataloader = DataLoader(shard, batch_size=cfg.store_batch_size, num_workers=4, prefetch_factor=4, pin_memory=True)
return dataloader

@staticmethod
Expand Down
2 changes: 1 addition & 1 deletion src/lm_saes/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -324,7 +324,7 @@ class LanguageModelSAETrainingConfig(LanguageModelSAERunnerConfig):
lr_warm_up_steps: int | float = 0.1
lr_cool_down_steps: int | float = 0.1
train_batch_size: int = 4096
clip_grad_value: float = 0.0
clip_grad_norm: float = 0.0
remove_gradient_parallel_to_decoder_directions: bool = False

finetuning: bool = False
Expand Down
44 changes: 27 additions & 17 deletions src/lm_saes/runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,19 @@
from torch.nn.parallel import DistributedDataParallel as DDP
from lm_saes.utils.misc import is_master

from torch.distributed.tensor.parallel import (
ColwiseParallel,
parallelize_module,
loss_parallel,
)
from torch.distributed._tensor import (
DTensor,
Shard,
Replicate,
distribute_module,
distribute_tensor,
)


def language_model_sae_runner(cfg: LanguageModelSAETrainingConfig):
if is_master():
Expand Down Expand Up @@ -77,24 +90,7 @@ def language_model_sae_runner(cfg: LanguageModelSAETrainingConfig):
model.eval()
activation_store = ActivationStore.from_config(model=model, cfg=cfg.act_store)

if (
cfg.sae.norm_activation == "dataset-wise" and cfg.sae.dataset_average_activation_norm is None
or cfg.sae.init_decoder_norm is None
):
assert not cfg.finetuning
sae = SparseAutoEncoder.from_initialization_searching(
activation_store=activation_store,
cfg=cfg,
)
else:
sae = SparseAutoEncoder.from_config(cfg=cfg.sae)

if cfg.finetuning:
# Fine-tune SAE with frozen encoder weights and bias
sae.train_finetune_for_suppression_parameters()

cfg.sae.save_hyperparameters(os.path.join(cfg.exp_result_dir, cfg.exp_name))
cfg.lm.save_lm_config(os.path.join(cfg.exp_result_dir, cfg.exp_name))

if (
cfg.sae.norm_activation == "dataset-wise" and cfg.sae.dataset_average_activation_norm is None
Expand Down Expand Up @@ -323,6 +319,20 @@ def activation_generation_runner(cfg: ActivationGenerationConfig):
def sample_feature_activations_runner(cfg: LanguageModelSAEAnalysisConfig):
sae = SparseAutoEncoder.from_config(cfg=cfg.sae)

if cfg.sae.tp_size > 1:
plan = {
"encoder": ColwiseParallel(output_layouts=Replicate()),
}
if cfg.sae.use_glu_encoder:
plan["encoder_glu"] = ColwiseParallel(output_layouts=Replicate())
sae = parallelize_module(sae, device_mesh=sae.device_mesh["tp"], parallelize_plan=plan) # type: ignore
sae.parallelize_plan = plan

sae.decoder.weight = None # type: ignore[assignment]
torch.cuda.empty_cache()



hf_model = AutoModelForCausalLM.from_pretrained(
(
cfg.lm.model_name
Expand Down
18 changes: 10 additions & 8 deletions src/lm_saes/sae_training.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,8 +145,9 @@ def train_sae(
if cfg.finetuning:
loss = loss_data["l_rec"].mean()
loss.backward()
if cfg.clip_grad_value > 0:
torch.nn.utils.clip_grad_value_(sae.parameters(), cfg.clip_grad_value)
grad_norm = torch.tensor([0.0], device=cfg.sae.device)
if cfg.clip_grad_norm > 0:
grad_norm = torch.nn.utils.clip_grad_norm_(sae.parameters(), cfg.clip_grad_norm)
if cfg.remove_gradient_parallel_to_decoder_directions:
sae.remove_gradient_parallel_to_decoder_directions()
optimizer.step()
Expand All @@ -171,13 +172,13 @@ def train_sae(
if cfg.wandb.log_to_wandb and (is_master()):
feature_sparsity = act_freq_scores / n_frac_active_tokens
log_feature_sparsity = torch.log10(feature_sparsity + 1e-10)
wandb_histogram = wandb.Histogram(
log_feature_sparsity.detach().cpu().float().numpy()
)
# wandb_histogram = wandb.Histogram(
# log_feature_sparsity.detach().cpu().float().numpy()
# )
wandb.log(
{
"metrics/mean_log10_feature_sparsity": log_feature_sparsity.mean().item(),
"plots/feature_density_line_chart": wandb_histogram,
# "plots/feature_density_line_chart": wandb_histogram,
"sparsity/below_1e-5": (feature_sparsity < 1e-5)
.sum()
.item(),
Expand Down Expand Up @@ -285,8 +286,9 @@ def train_sae(
# norm
"metrics/decoder_norm": decoder_norm.item(),
"metrics/encoder_norm": encoder_norm.item(),
"metrics/decoder_bias_mean": sae.decoder.bias.mean().item() if sae.cfg.use_decoder_bias else 0,
"metrics/enocder_bias_mean": sae.encoder.bias.mean().item(),
"metrics/decoder_bias_norm": sae.decoder.bias.norm().item() if sae.cfg.use_decoder_bias else 0,
"metrics/encoder_bias_norm": sae.encoder.bias.norm().item(),
"metrics/gradients_norm": grad_norm.item(),
# sparsity
"sparsity/l1_coefficient": sae.current_l1_coefficient,
"sparsity/mean_passes_since_fired": n_forward_passes_since_fired.mean().item(),
Expand Down