-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(HookedTransformer) accelerate inference with flash attention
- Loading branch information
1 parent
d844b51
commit 0e3d268
Showing
11 changed files
with
289 additions
and
34 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
import einops | ||
import torch | ||
|
||
from transformer_lens.components import Attention, GroupedQueryAttention | ||
from transformer_lens.HookedTransformerConfig import HookedTransformerConfig | ||
|
||
|
||
def test_flash_attention_output_is_correct(): | ||
""" | ||
Verify if flash attention output is correct. | ||
""" | ||
d_model = 512 | ||
d_head = 32 | ||
n_heads = 16 | ||
n_ctx = 128 | ||
n_key_value_heads = 4 | ||
n_layers = 1 | ||
dtype = torch.bfloat16 | ||
device = torch.device('cuda') | ||
|
||
cfg_dict = { | ||
'use_flash_attn': False, | ||
'd_model': d_model, | ||
'd_head': d_head, | ||
'n_heads': n_heads, | ||
'n_ctx': n_ctx, | ||
'n_key_value_heads': n_key_value_heads, | ||
'n_layers': n_layers, | ||
'act_fn': "silu", | ||
'dtype': torch.bfloat16, | ||
} | ||
regular_attention_cfg = HookedTransformerConfig.from_dict(cfg_dict) | ||
cfg_dict['use_flash_attn'] = True | ||
flash_attention_cfg = HookedTransformerConfig.from_dict(cfg_dict) | ||
flash_gqa_attention_cfg = HookedTransformerConfig.from_dict(cfg_dict) | ||
|
||
regular_attention = Attention(regular_attention_cfg) | ||
|
||
assert not hasattr(regular_attention, 'flash_attn_func'), "AbstractAttention should not have 'flash_attn_func' if set `use_flash_attn=False`" | ||
|
||
flash_attention = Attention(flash_attention_cfg) | ||
|
||
assert hasattr(flash_attention, 'flash_attn_func'), "AbstractAttention should have 'flash_attn_func' if set `use_flash_attn=True`" | ||
|
||
flash_gqa_attention = GroupedQueryAttention(flash_gqa_attention_cfg) | ||
|
||
# Variables started with `_` mean that the GQA key/value parameters | ||
W_Q = torch.rand((n_heads, d_model, d_head), dtype=dtype) | ||
b_Q = torch.rand((n_heads, d_head), dtype=dtype) | ||
_W_K = torch.rand((n_key_value_heads, d_model, d_head), dtype=dtype) | ||
W_K = torch.repeat_interleave(_W_K, dim=0, repeats=n_heads // n_key_value_heads) | ||
_b_K = torch.rand((n_key_value_heads, d_head), dtype=dtype) | ||
b_K = torch.repeat_interleave(_b_K, dim=0, repeats=n_heads // n_key_value_heads) | ||
_W_V = torch.rand((n_key_value_heads, d_model, d_head), dtype=dtype) | ||
W_V = torch.repeat_interleave(_W_V, dim=0, repeats=n_heads // n_key_value_heads) | ||
_b_V = torch.rand((n_key_value_heads, d_head), dtype=dtype) | ||
b_V = torch.repeat_interleave(_b_V, dim=0, repeats=n_heads // n_key_value_heads) | ||
W_O = torch.rand((n_heads, d_head, d_model), dtype=dtype) | ||
b_O = torch.rand(d_model, dtype=dtype) | ||
|
||
regular_attention_state_dict = { | ||
"W_Q": W_Q, | ||
"b_Q": b_Q, | ||
"W_O": W_O, | ||
"b_O": b_O, | ||
"W_K": W_K, | ||
"b_K": b_K, | ||
"W_V": W_V, | ||
"b_V": b_V, | ||
"mask": regular_attention.state_dict()["mask"], | ||
"IGNORE": regular_attention.state_dict()["IGNORE"], | ||
} | ||
flash_attention_state_dict = { | ||
"W_Q": W_Q, | ||
"b_Q": b_Q, | ||
"W_O": W_O, | ||
"b_O": b_O, | ||
"W_K": W_K, | ||
"b_K": b_K, | ||
"W_V": W_V, | ||
"b_V": b_V, | ||
"mask": flash_attention.state_dict()["mask"], | ||
"IGNORE": flash_attention.state_dict()["IGNORE"], | ||
} | ||
flash_gqa_attention_state_dict = { | ||
"W_Q": W_Q, | ||
"b_Q": b_Q, | ||
"W_O": W_O, | ||
"b_O": b_O, | ||
"_W_K": _W_K, | ||
"_b_K": _b_K, | ||
"_W_V": _W_V, | ||
"_b_V": _b_V, | ||
"mask": flash_attention.state_dict()["mask"], | ||
"IGNORE": flash_attention.state_dict()["IGNORE"], | ||
} | ||
|
||
regular_attention.load_state_dict(regular_attention_state_dict) | ||
regular_attention.to(device) | ||
flash_attention.load_state_dict(flash_attention_state_dict) | ||
flash_attention.to(device) | ||
flash_gqa_attention.load_state_dict(flash_gqa_attention_state_dict) | ||
flash_gqa_attention.to(device) | ||
|
||
query_input = torch.rand((1, 5, d_model), dtype=dtype).to(device) | ||
key_input = torch.rand((1, 5, d_model), dtype=dtype).to(device) | ||
value_input = torch.rand((1, 5, d_model), dtype=dtype).to(device) | ||
|
||
# Test regular attention and attention with FlashAttentionV2 | ||
regular_attn_output = regular_attention(query_input, key_input, value_input) | ||
flash_attn_output = flash_attention(query_input, key_input, value_input) | ||
|
||
assert torch.allclose(regular_attn_output, flash_attn_output, rtol=1e-2) | ||
|
||
# Test FlashAttention behaves correctly when use_split_qkv_input is True | ||
flash_gqa_attention.cfg.use_split_qkv_input = True | ||
split_query_input = einops.repeat(query_input, "b n d -> b n h d", h=n_heads).clone() | ||
split_key_input = einops.repeat(key_input, "b n d -> b n h d", h=n_key_value_heads).clone() | ||
split_value_input = einops.repeat(value_input, "b n d -> b n h d", h=n_key_value_heads).clone() | ||
|
||
split_flash_attn_output = flash_gqa_attention( | ||
split_query_input, split_key_input, split_value_input | ||
) | ||
|
||
assert torch.allclose(regular_attn_output, split_flash_attn_output, rtol=1e-2) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.