-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #187 from ORNL/ml_loops
Ml loops
- Loading branch information
Showing
50 changed files
with
1,985 additions
and
1,255 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -20,3 +20,5 @@ test.py | |
time.txt | ||
tmp/ | ||
deployment/data | ||
**/*output_data* | ||
examples/llm_complex/input_data |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
import multiprocessing | ||
import random | ||
from time import sleep | ||
|
||
from flowcept import Flowcept, FlowceptLoop | ||
|
||
if __name__ == '__main__': # | ||
|
||
interceptor_id = Flowcept.start_instrumentation_interceptor() | ||
|
||
event = multiprocessing.Event() | ||
process1 = multiprocessing.Process(target=Flowcept.start_persistence, args=(interceptor_id, event)) | ||
process1.start() | ||
sleep(1) | ||
# Run loop | ||
loop = FlowceptLoop(range(max_iterations := 3), workflow_id=interceptor_id) | ||
for item in loop: | ||
loss = random.random() | ||
sleep(0.05) | ||
print(item, loss) | ||
# The following is optional, in case you want to capture values generated inside the loop. | ||
loop.end_iter({"item": item, "loss": loss}) | ||
|
||
Flowcept.stop_instrumentation_interceptor() | ||
|
||
event.set() | ||
process1.join() | ||
|
||
docs = Flowcept.db.query(filter={"workflow_id": interceptor_id}) | ||
for d in docs: | ||
print(d) | ||
# assert len(docs) == max_iterations+1 # The whole loop itself is a task | ||
|
||
# | ||
# | ||
# @staticmethod | ||
# def start_instrumentation_interceptor(): | ||
# instance = InstrumentationInterceptor.get_instance() | ||
# instance_id = id(instance) | ||
# instance.start(bundle_exec_id=instance_id) | ||
# return instance_id | ||
# | ||
# @staticmethod | ||
# def stop_instrumentation_interceptor(): | ||
# instance = InstrumentationInterceptor.get_instance() | ||
# instance.stop() | ||
# | ||
# @staticmethod | ||
# def start_persistence(interceptor_id, event): | ||
# from flowcept.flowceptor.consumers.document_inserter import DocumentInserter | ||
# inserter = DocumentInserter( | ||
# check_safe_stops=True, | ||
# bundle_exec_id=interceptor_id, | ||
# ).start() | ||
# event.wait() | ||
# inserter.stop() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
from time import time | ||
|
||
import torch | ||
import os | ||
|
||
from torch.utils.data import Subset | ||
from torchtext.data.utils import get_tokenizer | ||
from torchtext.vocab import build_vocab_from_iterator | ||
from datasets import load_dataset | ||
|
||
|
||
# Define a function to yield tokens from the dataset | ||
def yield_tokens(tokenizer, data_iter): | ||
for item in data_iter: | ||
if len(item["text"]): | ||
yield tokenizer(item["text"]) | ||
|
||
|
||
# Define a function to process the raw text and convert it to tensors | ||
def data_process(tokenizer, vocab, raw_text_iter): | ||
data = [ | ||
torch.tensor( | ||
[vocab[token] for token in tokenizer(item["text"])], | ||
dtype=torch.long, | ||
) | ||
for item in raw_text_iter | ||
] | ||
return torch.cat(tuple(filter(lambda t: t.numel() > 0, data))) | ||
|
||
|
||
def get_dataset_ref(campaign_id, train_data, val_data, test_data): | ||
dataset_ref = f"{campaign_id}_train_shape_{train_data.shape}_val_shape_{val_data.shape}_test_shape_{test_data.shape}" | ||
return dataset_ref | ||
|
||
def get_wiki_text_dataset(data_dir): | ||
# Load the WikiText2 dataset | ||
t0 = time() | ||
train_data = torch.load(os.path.join(data_dir, "train_data.tensor")) | ||
val_data = torch.load(os.path.join(data_dir, "val_data.tensor")) | ||
test_data = torch.load(os.path.join(data_dir, "test_data.tensor")) | ||
t1 = time() | ||
t_disk_load = t1 - t0 | ||
|
||
try: | ||
if torch.cuda.is_available(): | ||
device = torch.device("gpu") | ||
elif torch.backends.mps.is_available(): | ||
device = torch.device("mps") | ||
else: | ||
device = torch.device("cpu") | ||
|
||
t2 = time() | ||
t_device_available = t2 - t1 | ||
train_data = train_data.to(device) | ||
val_data = val_data.to(device) | ||
test_data = test_data.to(device) | ||
t_gpu_load = time() - t2 | ||
except: | ||
raise Exception("Couldn't send data to device") | ||
|
||
print("Train data", train_data.shape) | ||
print("Validation data", val_data.shape) | ||
print("Test data", test_data.shape) | ||
return ( | ||
train_data, | ||
val_data, | ||
test_data, | ||
t_disk_load, | ||
t_device_available, | ||
t_gpu_load, | ||
) | ||
|
||
def save_workflow(ntokens, train_data, val_data, test_data, dataset_ref, subset_size=None, tokenizer_type=None, campaign_id=None): | ||
from flowcept import WorkflowObject, Flowcept | ||
config = { | ||
"subset_size": subset_size, | ||
"tokenizer_type": tokenizer_type | ||
} | ||
dataset_prep_wf = WorkflowObject() | ||
dataset_prep_wf.used = config | ||
dataset_prep_wf.campaign_id = campaign_id | ||
dataset_prep_wf.name = "generate_wikitext_dataset" | ||
|
||
dataset_prep_wf.generated = { | ||
"ntokens": ntokens, | ||
"dataset_ref": dataset_ref, | ||
"train_data_shape": list(train_data.shape), | ||
"val_data_shape": list(val_data.shape), | ||
"test_data_shape": list(test_data.shape), | ||
} | ||
Flowcept.db.insert_or_update_workflow(dataset_prep_wf) | ||
print(dataset_prep_wf) | ||
return dataset_prep_wf.workflow_id, dataset_ref | ||
|
||
|
||
def dataprep_workflow(data_dir="input_data", | ||
tokenizer_type="basic_english", # spacy, moses, toktok, revtok, subword | ||
subset_size=None, | ||
campaign_id=None): | ||
|
||
os.makedirs(data_dir, exist_ok=True) | ||
|
||
print("Downloading dataset") | ||
dataset = load_dataset("wikitext", "wikitext-2-v1") | ||
print("Ok, now saving it into the current directory") | ||
dataset.save_to_disk(os.path.join(data_dir, "wikitext-2-v1.data")) | ||
|
||
test_dataset = dataset["test"] | ||
train_dataset = dataset["train"] | ||
validation_dataset = dataset["validation"] | ||
|
||
if subset_size is not None and subset_size > 0: | ||
test_dataset = Subset(test_dataset, range(subset_size)) | ||
train_dataset = Subset(train_dataset, range(subset_size)) | ||
validation_dataset = Subset(validation_dataset, range(subset_size)) | ||
|
||
# Build the vocabulary from the training dataset | ||
tokenizer = get_tokenizer(tokenizer_type) | ||
vocab = build_vocab_from_iterator(yield_tokens(tokenizer, train_dataset)) | ||
vocab.set_default_index(vocab["<unk>"]) | ||
ntokens = len(vocab) | ||
|
||
# Process the train, validation, and test datasets | ||
train_data = data_process(tokenizer, vocab, train_dataset) | ||
val_data = data_process(tokenizer, vocab, validation_dataset) | ||
test_data = data_process(tokenizer, vocab, test_dataset) | ||
|
||
train_data_path = os.path.join(data_dir, "train_data.tensor") | ||
val_data_path = os.path.join(data_dir, "val_data.tensor") | ||
test_data_path = os.path.join(data_dir, "test_data.tensor") | ||
|
||
torch.save(train_data, train_data_path) | ||
torch.save(val_data, val_data_path) | ||
torch.save(test_data, test_data_path) | ||
|
||
print(f"Saved files in {data_dir}. Now running some asserts.") | ||
|
||
train_data_loaded = torch.load(train_data_path) | ||
val_data_loaded = torch.load(val_data_path) | ||
test_data_loaded = torch.load(test_data_path) | ||
|
||
assert all(train_data == train_data_loaded) | ||
assert all(val_data == val_data_loaded) | ||
assert all(test_data == test_data_loaded) | ||
|
||
dataset_ref = get_dataset_ref(campaign_id, train_data, val_data, test_data) | ||
wf_id = save_workflow(ntokens, train_data, val_data, test_data, dataset_ref, subset_size=subset_size, tokenizer_type=tokenizer_type, campaign_id=campaign_id) | ||
return wf_id, dataset_ref, ntokens | ||
|
Oops, something went wrong.