Skip to content

Commit

Permalink
Fix parabolic fit to include T dependence (#79)
Browse files Browse the repository at this point in the history
  • Loading branch information
jeanlucf22 authored Dec 10, 2024
1 parent 62c957a commit e00e782
Showing 1 changed file with 82 additions and 31 deletions.
113 changes: 82 additions & 31 deletions utils/parabolic_fit.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,54 +3,105 @@
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

#usage example:
#python parabolic_fit.py phaseL 900. FvsC900.csv 920. FvsC920.csv 0.7 0.85

#
def poly2(x, A, B, C):
y = A*x*x+B*x+C
return y

#############################

nargs = len(sys.argv)

ra = np.genfromtxt('FvsC.csv', delimiter=',',dtype=None, names=True)
phase = sys.argv[1]
print("phase {}".format(phase))

if phase=='phaseL':
col = 1
if phase=='phaseA':
col = 2
if phase=='phaseB':
col = 3

filenames = []
temperatures = []

temperatures.append(sys.argv[2])
temperatures.append(sys.argv[4])

aa = ra.view(np.float64).reshape(len(ra), -1)
Tref = eval(temperatures[0])

nrows = aa.shape[0]
filenames.append(sys.argv[3])
filenames.append(sys.argv[5])

#limit x range on left
if nargs>1:
xmin = eval(sys.argv[1])
print("Min. value for x = {}".format(xmin))
n=int(nrows*xmin)
for i in range(n):
print('remove row 0')
aa = np.delete(aa, (0), axis=0)
a=[]
b=[]
c=[]

#limit x range on right
if nargs>2:
xmax = eval(sys.argv[2])
print("max. value for x = {}".format(xmax))
n=int(nrows*xmax)
print(n)
for i in range(nrows-n):
print("remove row {}".format(nrows-i-1))
aa = np.delete(aa, (nrows-i-1), axis=0)
for filename, temperature in zip(filenames,temperatures):
print("filename = {}".format(filename))
print("temperature = {}".format(temperature))
ra = np.genfromtxt(filename, delimiter=',',dtype=None, names=True)

aa = ra.view(np.float64).reshape(len(ra), -1)

x=aa[:,0]
nrows = aa.shape[0]

#loop over columns > 0 (phases)
for j in range(1,aa.shape[1]):
y=aa[:,j]
#limit x range on right
if nargs>7:
xmax = eval(sys.argv[7])
print("max. value for x = {}".format(xmax))
n=int(nrows*xmax)
print(n)
for i in range(nrows-n):
#print("remove row {}".format(nrows-i-1))
aa = np.delete(aa, (nrows-i-1), axis=0)

parameters, covariance = curve_fit(poly2, x,y)
fit_A=parameters[0]
fit_B=parameters[1]
fit_C=parameters[2]
print("polynomial {}*x^2 + {}*x + {}".format(fit_A,fit_B,fit_C))
#limit x range on left
if nargs>6:
xmin = eval(sys.argv[6])
print("Min. value for x = {}".format(xmin))
n=int(nrows*xmin)
for i in range(n):
#print('remove row 0')
aa = np.delete(aa, (0), axis=0)

fit_y = poly2(x, fit_A, fit_B, fit_C)
x=aa[:,0]

y=aa[:,col]

p, covariance = curve_fit(poly2, x,y)
a.append(p[0])
b.append(p[1])
c.append(p[2])
print("T = {}, polynomial {}*x^2 + {}*x + {}".format(temperature,p[0],p[1],p[2]))

fit_y = poly2(x, p[0], p[1], p[2])
plt.plot(x,y,'o')
plt.plot(x,fit_y,'-')
#plotfile = "parabolic_fit"+str(temperature)+".png"
#plt.savefig(plotfile, dpi=100)

#get temperature dependent coefficients
dTinv=1./(eval(temperatures[1])-eval(temperatures[0]))
a0=2*a[0]
a1=2*(a[1]-a[0])*dTinv
b0=b[0]
b1=(b[1]-b[0])*dTinv
c0=c[0]
c1=(c[1]-c[0])*dTinv
print("0.5*({}+{}*(T-{}))*x^2 + ({}+{}*(T-{}))*x + ({}+{}*(T-{}))".format(a0,a1,Tref,b0,b1,Tref,c0,c1,Tref))

#check result for intermediate temperature
temperature=0.5*(eval(temperatures[0])+eval(temperatures[1]))
p0=0.5*(a0+a1*(temperature-Tref))
p1=b0+b1*(temperature-Tref)
p2=c0+c1*(temperature-Tref)

plt.savefig('parabolic_fit.png', dpi=100)
fit_y = poly2(x, p0, p1, p2)
plt.plot(x,fit_y,'-')
plotfile = "parabolic_fit"+str(temperature)+".png"
plt.savefig(plotfile, dpi=100)

0 comments on commit e00e782

Please sign in to comment.