Skip to content

deps-cuda: make sure cudnn gets installed, pin torch version for CUDA 11 #200

deps-cuda: make sure cudnn gets installed, pin torch version for CUDA 11

deps-cuda: make sure cudnn gets installed, pin torch version for CUDA 11 #200

Workflow file for this run

name: Docker Image CI
on:
push:
branches: [ "master" ]
workflow_dispatch: # run manually
env:
# FIXME: linux/arm/v7 disabled as long as scikit-build/cmake-python-distributions#503 is unresolved
# PLATFORMS: linux/amd64,linux/arm/v7,linux/arm64/v8,linux/ppc64le
PLATFORMS: linux/amd64,linux/arm64/v8,linux/ppc64le
jobs:
build:
runs-on: ubuntu-latest
permissions:
packages: write
contents: read
env:
DOCKER_BASE_TAG: ghcr.io/ocr-d docker.io/ocrd
# TODO(kba): make the interpolation work correctly
# DOCKER_BUILD: docker buildx build --progress=plain --platform ${{ env.PLATFORMS }} --push
# TODO(kba): Investigate why ppc64le build hangs on "Installing build dependencies"
# TODO(kba): Investigate why arm64 fails with .buildkit_qemu_emulator: /usr/local/bin/conda: Invalid ELF image for this architecture
DOCKER_BUILD: docker buildx build --progress=plain --platform linux/amd64 --push
steps:
- name: Export variables
run: |
echo "DOCKER_BASE_TAG=${{ env.DOCKER_BASE_TAG }}" >> $GITHUB_ENV
echo "DOCKER_BUILD=${{ env.DOCKER_BUILD }}" >> $GITHUB_ENV
- name: Checkout
uses: actions/checkout@v4
with:
# we need tags for docker version tagging
fetch-tags: true
fetch-depth: 0
- # Activate cache export feature to reduce build time of images
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to GitHub Container Registry
uses: docker/login-action@v3
with:
registry: ghcr.io
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Log in to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERIO_USERNAME }}
password: ${{ secrets.DOCKERIO_PASSWORD }}
- name: Build the Docker image
run: make docker
- name: Build the Docker image with GPU support
run: make docker-cuda
- name: Build the Docker images with GPU support and ML frameworks
run: make docker-cuda-tf1 docker-cuda-tf2 docker-cuda-torch