Skip to content

Commit

Permalink
TensorRT 10 is supported, YOLOv11, YOLOv11-obb and YOLOv11-seg detect…
Browse files Browse the repository at this point in the history
…or worked with TensorRT
  • Loading branch information
Nuzhny007 committed Oct 2, 2024
1 parent c2cad09 commit b3bcfb3
Show file tree
Hide file tree
Showing 41 changed files with 1,121 additions and 14,417 deletions.
4 changes: 4 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,10 @@

# Last changes

* TensorRT 10 is supported

* YOLOv11, YOLOv11-obb and YOLOv11-seg detector worked with TensorRT! Export pretrained Pytorch models [here (ultralytics/ultralytics)](https://github.com/ultralytics/ultralytics) to onnx format and run Multitarget-tracker with -e=6 example

* YOLOv8-obb detector worked with TensorRT! Export pretrained Pytorch models [here (ultralytics/ultralytics)](https://github.com/ultralytics/ultralytics) to onnx format and run Multitarget-tracker with -e=6 example

* YOLOv10 detector worked with TensorRT! Export pretrained Pytorch models [here (THU-MIG/yolov10)](https://github.com/THU-MIG/yolov10) to onnx format and run Multitarget-tracker with -e=6 example
Expand Down
142 changes: 142 additions & 0 deletions data/settings_yolov11.ini
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
[detection]

#-----------------------------
# opencv_dnn = 12
# darknet_cudnn = 10
# tensorrt = 11
detector_backend = 12

#-----------------------------
# Target and backend for opencv_dnn detector
# DNN_TARGET_CPU
# DNN_TARGET_OPENCL
# DNN_TARGET_OPENCL_FP16
# DNN_TARGET_MYRIAD
# DNN_TARGET_CUDA
# DNN_TARGET_CUDA_FP16
ocv_dnn_target = DNN_TARGET_CPU

# DNN_BACKEND_DEFAULT
# DNN_BACKEND_HALIDE
# DNN_BACKEND_INFERENCE_ENGINE
# DNN_BACKEND_OPENCV
# DNN_BACKEND_VKCOM
# DNN_BACKEND_CUDA
# DNN_BACKEND_INFERENCE_ENGINE_NGRAPH
# DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019
ocv_dnn_backend = DNN_BACKEND_OPENCV

#-----------------------------
nn_weights = C:/work/home/mtracker/Multitarget-tracker/data/coco/yolo11s.onnx
nn_config = C:/work/home/mtracker/Multitarget-tracker/data/coco/yolo11s.onnx
class_names = C:/work/home/mtracker/Multitarget-tracker/data/coco/coco.names

#-----------------------------
confidence_threshold = 0.3

max_crop_ratio = 0
max_batch = 1
gpu_id = 0

#-----------------------------
# YOLOV3
# YOLOV4
# YOLOV5
net_type = YOLOV11

#-----------------------------
# INT8
# FP16
# FP32
inference_precision = FP16


[tracking]

#-----------------------------
# DistCenters = 0 // Euclidean distance between centers, pixels
# DistRects = 1 // Euclidean distance between bounding rectangles, pixels
# DistJaccard = 2 // Intersection over Union, IoU, [0, 1]
# DistHist = 3 // Bhatacharia distance between histograms, [0, 1]

distance_type = 0

#-----------------------------
# KalmanLinear = 0
# KalmanUnscented = 1

kalman_type = 0

#-----------------------------
# FilterCenter = 0
# FilterRect = 1
# FilterRRect = 2

filter_goal = 0

#-----------------------------
# TrackNone = 0
# TrackKCF = 1
# TrackMIL = 2
# TrackMedianFlow = 3
# TrackGOTURN = 4
# TrackMOSSE = 5
# TrackCSRT = 6
# TrackDAT = 7
# TrackSTAPLE = 8
# TrackLDES = 9
# TrackDaSiamRPN = 10
# Used if filter_goal == FilterRect

lost_track_type = 0

#-----------------------------
# MatchHungrian = 0
# MatchBipart = 1

match_type = 0

#-----------------------------
# Use constant acceleration motion model:
# 0 - unused (stable)
# 1 - use acceleration in Kalman filter (experimental)
use_aceleration = 0

#-----------------------------
# Delta time for Kalman filter
delta_time = 0.4

#-----------------------------
# Accel noise magnitude for Kalman filter
accel_noise = 0.2

#-----------------------------
# Distance threshold between region and object on two frames
dist_thresh = 0.8

#-----------------------------
# If this value > 0 than will be used circle with this radius
# If this value <= 0 than will be used ellipse with size (3*vx, 3*vy), vx and vy - horizontal and vertical speed in pixelsa
min_area_radius_pix = -1

#-----------------------------
# Minimal area radius in ration for object size. Used if min_area_radius_pix < 0
min_area_radius_k = 0.8

#-----------------------------
# If the object do not assignment more than this frames then it will be removed
max_skip_frames = 50

#-----------------------------
# The maximum trajectory length
max_trace_len = 50

#-----------------------------
# Detection abandoned objects
detect_abandoned = 0
# After this time (in seconds) the object is considered abandoned
min_static_time = 5
# After this time (in seconds) the abandoned object will be removed
max_static_time = 25
# Speed in pixels. If speed of object is more that this value than object is non static
max_speed_for_static = 10
142 changes: 142 additions & 0 deletions data/settings_yolov11_obb.ini
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
[detection]

#-----------------------------
# opencv_dnn = 12
# darknet_cudnn = 10
# tensorrt = 11
detector_backend = 12

#-----------------------------
# Target and backend for opencv_dnn detector
# DNN_TARGET_CPU
# DNN_TARGET_OPENCL
# DNN_TARGET_OPENCL_FP16
# DNN_TARGET_MYRIAD
# DNN_TARGET_CUDA
# DNN_TARGET_CUDA_FP16
ocv_dnn_target = DNN_TARGET_CPU

# DNN_BACKEND_DEFAULT
# DNN_BACKEND_HALIDE
# DNN_BACKEND_INFERENCE_ENGINE
# DNN_BACKEND_OPENCV
# DNN_BACKEND_VKCOM
# DNN_BACKEND_CUDA
# DNN_BACKEND_INFERENCE_ENGINE_NGRAPH
# DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019
ocv_dnn_backend = DNN_BACKEND_OPENCV

#-----------------------------
nn_weights = C:/work/home/mtracker/Multitarget-tracker/data/coco/yolo11s-obb.onnx
nn_config = C:/work/home/mtracker/Multitarget-tracker/data/coco/yolo11s-obb.onnx
class_names = C:/work/home/mtracker/Multitarget-tracker/data/DOTA.names

#-----------------------------
confidence_threshold = 0.3

max_crop_ratio = 0
max_batch = 1
gpu_id = 0

#-----------------------------
# YOLOV3
# YOLOV4
# YOLOV5
net_type = YOLOV11_OBB

#-----------------------------
# INT8
# FP16
# FP32
inference_precision = FP16


[tracking]

#-----------------------------
# DistCenters = 0 // Euclidean distance between centers, pixels
# DistRects = 1 // Euclidean distance between bounding rectangles, pixels
# DistJaccard = 2 // Intersection over Union, IoU, [0, 1]
# DistHist = 3 // Bhatacharia distance between histograms, [0, 1]

distance_type = 0

#-----------------------------
# KalmanLinear = 0
# KalmanUnscented = 1

kalman_type = 0

#-----------------------------
# FilterCenter = 0
# FilterRect = 1
# FilterRRect = 2

filter_goal = 0

#-----------------------------
# TrackNone = 0
# TrackKCF = 1
# TrackMIL = 2
# TrackMedianFlow = 3
# TrackGOTURN = 4
# TrackMOSSE = 5
# TrackCSRT = 6
# TrackDAT = 7
# TrackSTAPLE = 8
# TrackLDES = 9
# TrackDaSiamRPN = 10
# Used if filter_goal == FilterRect

lost_track_type = 0

#-----------------------------
# MatchHungrian = 0
# MatchBipart = 1

match_type = 0

#-----------------------------
# Use constant acceleration motion model:
# 0 - unused (stable)
# 1 - use acceleration in Kalman filter (experimental)
use_aceleration = 0

#-----------------------------
# Delta time for Kalman filter
delta_time = 0.4

#-----------------------------
# Accel noise magnitude for Kalman filter
accel_noise = 0.2

#-----------------------------
# Distance threshold between region and object on two frames
dist_thresh = 0.8

#-----------------------------
# If this value > 0 than will be used circle with this radius
# If this value <= 0 than will be used ellipse with size (3*vx, 3*vy), vx and vy - horizontal and vertical speed in pixelsa
min_area_radius_pix = -1

#-----------------------------
# Minimal area radius in ration for object size. Used if min_area_radius_pix < 0
min_area_radius_k = 0.8

#-----------------------------
# If the object do not assignment more than this frames then it will be removed
max_skip_frames = 50

#-----------------------------
# The maximum trajectory length
max_trace_len = 50

#-----------------------------
# Detection abandoned objects
detect_abandoned = 0
# After this time (in seconds) the object is considered abandoned
min_static_time = 5
# After this time (in seconds) the abandoned object will be removed
max_static_time = 25
# Speed in pixels. If speed of object is more that this value than object is non static
max_speed_for_static = 10
Loading

0 comments on commit b3bcfb3

Please sign in to comment.