Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FEAT] Ability to save and load StatsForecast #667

Merged
merged 21 commits into from
Oct 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
21 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
168 changes: 168 additions & 0 deletions nbs/src/core/core.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -75,9 +75,14 @@
"import logging\n",
"import reprlib\n",
"import warnings\n",
"import errno\n",
"from pathlib import Path\n",
"from os import cpu_count\n",
"from typing import Any, List, Optional, Union, Dict\n",
"import pkg_resources\n",
"import pickle\n",
"import datetime as dt\n",
"import re\n",
"\n",
"from fugue.execution.factory import make_execution_engine\n",
"import numpy as np\n",
Expand Down Expand Up @@ -1965,6 +1970,106 @@
" palette='tab20b',\n",
" )\n",
" \n",
" def save(\n",
" self, \n",
" path: Optional[Union[Path, str]] = None,\n",
" max_size: Optional[str] = None,\n",
" trim: bool = False,\n",
" ):\n",
" \"\"\"Function that will save StatsForecast class with certain settings to make it \n",
" reproducible.\n",
" \n",
" Parameters\n",
" ----------\n",
" path : str or pathlib.Path, optional (default=None)\n",
" Path of the file to be saved. If `None` will create one in the current \n",
" directory using the current UTC timestamp.\n",
" max_size : str, optional (default = None)\n",
" StatsForecast object should not exceed this size.\n",
" Available byte naming: ['B', 'KB', 'MB', 'GB']\n",
" trim : bool (default = False)\n",
" Delete any attributes not needed for inference.\n",
" \"\"\"\n",
" # Will be used to find the size of the fitted models\n",
" # Never expecting anything higher than GB (even that's a lot')\n",
" bytes_hmap = {\n",
" \"B\": 1,\n",
" \"KB\": 2**10,\n",
" \"MB\": 2**20,\n",
" \"GB\": 2**30,\n",
" }\n",
"\n",
" # Removing unnecessary attributes\n",
" # @jmoralez decide future implementation\n",
" trim_attr:list = [\"fcst_fitted_values_\", \"cv_fitted_values_\"]\n",
" if trim:\n",
" for attr in trim_attr:\n",
" # remove unnecessary attributes here\n",
" self.__dict__.pop(attr, None)\n",
"\n",
" sf_size = len(pickle.dumps(self))\n",
"\n",
" if max_size is not None:\n",
" cap_size = self._get_cap_size(max_size, bytes_hmap)\n",
" if sf_size >= cap_size:\n",
" err_messg = \"StatsForecast is larger than the specified max_size\"\n",
" raise OSError(errno.EFBIG, err_messg) \n",
"\n",
" converted_size, sf_byte = None, None\n",
" for key in reversed(list(bytes_hmap.keys())):\n",
" x_byte = bytes_hmap[key]\n",
" if sf_size >= x_byte:\n",
" converted_size = sf_size / x_byte\n",
" sf_byte = key\n",
" break\n",
" \n",
" if converted_size is None or sf_byte is None:\n",
" err_messg = \"Internal Error, this shouldn't happen, please open an issue\"\n",
" raise RuntimeError(err_messg)\n",
" \n",
" print(f\"Saving StatsForecast object of size {converted_size:.2f}{sf_byte}.\")\n",
" \n",
" if path is None:\n",
" datetime_record = dt.datetime.utcnow().strftime(\"%Y-%m-%d_%H-%M-%S\")\n",
" path = f\"StatsForecast_{datetime_record}.pkl\"\n",
" \n",
" with open(path, \"wb\") as m_file:\n",
" pickle.dump(self, m_file)\n",
" print(\"StatsForecast object saved\")\n",
"\n",
" def _get_cap_size(self, max_size, bytes_hmap):\n",
" max_size = max_size.upper().replace(\" \", \"\")\n",
" match = re.match(r'(\\d+\\.\\d+|\\d+)(\\w+)', max_size)\n",
" if match is None or len(match.groups()) < 2 or match[2] not in bytes_hmap.keys():\n",
" parsing_error = \"Couldn't parse `max_size`, it should be `None`\", \\\n",
" \" or a number followed by one of the following units: ['B', 'KB', 'MB', 'GB']\"\n",
" raise ValueError(parsing_error)\n",
" else:\n",
" m_size = float(match[1])\n",
" key_ = match[2]\n",
" cap_size = m_size * bytes_hmap[key_]\n",
" return cap_size\n",
" \n",
" @staticmethod\n",
" def load(path:Union[Path, str]):\n",
" \"\"\"\n",
" Automatically loads the model into ready StatsForecast.\n",
"\n",
" Parameters\n",
" ----------\n",
" path : str or pathlib.Path\n",
" Path to saved StatsForecast file.\n",
" \n",
" Returns\n",
" -------\n",
" sf: StatsForecast\n",
" Previously saved StatsForecast\n",
" \"\"\"\n",
" if not Path(path).exists():\n",
" raise ValueError(\"Specified path does not exist, check again and retry.\")\n",
" with open(path, \"rb\") as f:\n",
" return pickle.load(f)\n",
" \n",
" def __repr__(self):\n",
" return f\"StatsForecast(models=[{','.join(map(repr, self.models))}])\""
]
Expand Down Expand Up @@ -2196,6 +2301,49 @@
"fcsts_df.groupby('unique_id').tail(4)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "55b00e9b",
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"# Testing save and load \n",
"import tempfile\n",
"from polars.testing import assert_frame_equal"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b9eaa52",
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"with tempfile.TemporaryDirectory() as td:\n",
" f_path = Path(td).joinpath(\"sf_test.pickle\")\n",
" \n",
" test_df = pl.from_pandas(panel_df.astype({\"unique_id\": str}))\n",
" test_frcs = StatsForecast(\n",
" df=test_df,\n",
" models=models,\n",
" freq='D', \n",
" n_jobs=1, \n",
" verbose=True\n",
" )\n",
"\n",
" origin_df = test_frcs.forecast(h=4, fitted=True)\n",
"\n",
" test_frcs.save(f_path)\n",
"\n",
" sf_test = StatsForecast.load(f_path)\n",
" load_df = sf_test.forecast(h=4, fitted=True)\n",
" \n",
" assert_frame_equal(origin_df, load_df)"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand Down Expand Up @@ -3044,6 +3192,26 @@
" name='StatsForecast.plot')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7c69a901",
"metadata": {},
"outputs": [],
"source": [
"show_doc(StatsForecast.save, title_level=2, name='StatsForecast.save')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ac4134ac",
"metadata": {},
"outputs": [],
"source": [
"show_doc(StatsForecast.load, title_level=2, name='StatsForecast.load')"
]
},
{
"cell_type": "code",
"execution_count": null,
Expand Down
6 changes: 6 additions & 0 deletions statsforecast/_modidx.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,6 +160,8 @@
'statsforecast/core.py'),
'statsforecast.core._StatsForecast._forecast_parallel': ( 'src/core/core.html#_statsforecast._forecast_parallel',
'statsforecast/core.py'),
'statsforecast.core._StatsForecast._get_cap_size': ( 'src/core/core.html#_statsforecast._get_cap_size',
'statsforecast/core.py'),
'statsforecast.core._StatsForecast._get_gas_Xs': ( 'src/core/core.html#_statsforecast._get_gas_xs',
'statsforecast/core.py'),
'statsforecast.core._StatsForecast._get_pool': ( 'src/core/core.html#_statsforecast._get_pool',
Expand Down Expand Up @@ -188,10 +190,14 @@
'statsforecast/core.py'),
'statsforecast.core._StatsForecast.forecast_fitted_values': ( 'src/core/core.html#_statsforecast.forecast_fitted_values',
'statsforecast/core.py'),
'statsforecast.core._StatsForecast.load': ( 'src/core/core.html#_statsforecast.load',
'statsforecast/core.py'),
'statsforecast.core._StatsForecast.plot': ( 'src/core/core.html#_statsforecast.plot',
'statsforecast/core.py'),
'statsforecast.core._StatsForecast.predict': ( 'src/core/core.html#_statsforecast.predict',
'statsforecast/core.py'),
'statsforecast.core._StatsForecast.save': ( 'src/core/core.html#_statsforecast.save',
'statsforecast/core.py'),
'statsforecast.core._cv_dates': ('src/core/core.html#_cv_dates', 'statsforecast/core.py'),
'statsforecast.core._get_n_jobs': ('src/core/core.html#_get_n_jobs', 'statsforecast/core.py'),
'statsforecast.core._parse_ds_type': ('src/core/core.html#_parse_ds_type', 'statsforecast/core.py'),
Expand Down
112 changes: 111 additions & 1 deletion statsforecast/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,14 @@
import logging
import reprlib
import warnings
import errno
from pathlib import Path
from os import cpu_count
from typing import Any, List, Optional, Union, Dict
import pkg_resources
import pickle
import datetime as dt
import re

from fugue.execution.factory import make_execution_engine
import numpy as np
Expand Down Expand Up @@ -453,7 +458,6 @@ def __init__(
sort_dataframe: bool,
validate: Optional[bool] = True,
):

self.dataframe = dataframe
self.sort_dataframe = sort_dataframe
self.validate = validate
Expand Down Expand Up @@ -1546,6 +1550,112 @@ def plot(
palette="tab20b",
)

def save(
self,
path: Optional[Union[Path, str]] = None,
max_size: Optional[str] = None,
trim: bool = False,
):
"""Function that will save StatsForecast class with certain settings to make it
reproducible.

Parameters
----------
path : str or pathlib.Path, optional (default=None)
Path of the file to be saved. If `None` will create one in the current
directory using the current UTC timestamp.
max_size : str, optional (default = None)
StatsForecast object should not exceed this size.
Available byte naming: ['B', 'KB', 'MB', 'GB']
trim : bool (default = False)
Delete any attributes not needed for inference.
"""
# Will be used to find the size of the fitted models
# Never expecting anything higher than GB (even that's a lot')
bytes_hmap = {
"B": 1,
"KB": 2**10,
"MB": 2**20,
"GB": 2**30,
}

# Removing unnecessary attributes
# @jmoralez decide future implementation
trim_attr: list = ["fcst_fitted_values_", "cv_fitted_values_"]
if trim:
for attr in trim_attr:
# remove unnecessary attributes here
self.__dict__.pop(attr, None)

sf_size = len(pickle.dumps(self))

if max_size is not None:
cap_size = self._get_cap_size(max_size, bytes_hmap)
if sf_size >= cap_size:
err_messg = "StatsForecast is larger than the specified max_size"
raise OSError(errno.EFBIG, err_messg)

converted_size, sf_byte = None, None
for key in reversed(list(bytes_hmap.keys())):
x_byte = bytes_hmap[key]
if sf_size >= x_byte:
converted_size = sf_size / x_byte
sf_byte = key
break

if converted_size is None or sf_byte is None:
err_messg = "Internal Error, this shouldn't happen, please open an issue"
raise RuntimeError(err_messg)

print(f"Saving StatsForecast object of size {converted_size:.2f}{sf_byte}.")

if path is None:
datetime_record = dt.datetime.utcnow().strftime("%Y-%m-%d_%H-%M-%S")
path = f"StatsForecast_{datetime_record}.pkl"

with open(path, "wb") as m_file:
pickle.dump(self, m_file)
print("StatsForecast object saved")

def _get_cap_size(self, max_size, bytes_hmap):
max_size = max_size.upper().replace(" ", "")
match = re.match(r"(\d+\.\d+|\d+)(\w+)", max_size)
if (
match is None
or len(match.groups()) < 2
or match[2] not in bytes_hmap.keys()
):
parsing_error = (
"Couldn't parse `max_size`, it should be `None`",
" or a number followed by one of the following units: ['B', 'KB', 'MB', 'GB']",
)
raise ValueError(parsing_error)
else:
m_size = float(match[1])
key_ = match[2]
cap_size = m_size * bytes_hmap[key_]
return cap_size

@staticmethod
def load(path: Union[Path, str]):
"""
Automatically loads the model into ready StatsForecast.

Parameters
----------
path : str or pathlib.Path
Path to saved StatsForecast file.

Returns
-------
sf: StatsForecast
Previously saved StatsForecast
"""
if not Path(path).exists():
raise ValueError("Specified path does not exist, check again and retry.")
with open(path, "rb") as f:
return pickle.load(f)

def __repr__(self):
return f"StatsForecast(models=[{','.join(map(repr, self.models))}])"

Expand Down
Loading