Skip to content

Releases: Nixtla/mlforecast

v1.0.0

06 Dec 18:26
da8d9e2
Compare
Choose a tag to compare

Breaking Change

  • breaking: remove window_ops and numba dependencies @jmoralez (#462)

v0.15.1

28 Nov 20:10
Compare
Choose a tag to compare

Changes

New Features

v0.15.0

14 Nov 17:43
Compare
Choose a tag to compare

Breaking Change

  • breaking: drop rows with null targets when dropna=False @jmoralez (#447)

Bug Fixes

Enhancement

  • enh(distributed): propagate null features in spark @jmoralez (#448)

v0.14.0

11 Nov 19:23
Compare
Choose a tag to compare

New Features

  • feat: add weight_col to MLForecast.fit and MLForecast.cross_validation @jmoralez (#444)
  • feat: infer samples required for built-in lag transforms updates @jmoralez (#445)

v0.13.6

08 Nov 18:01
Compare
Choose a tag to compare

Bug Fixes

  • fix(distributed): exogenous handling in distributed cross validation @jmoralez (#443)
  • fix(distributed): support pre-computed features @jmoralez (#436)

v0.13.5

10 Oct 21:14
Compare
Choose a tag to compare

Enhancement

  • enh: add step_size to AutoMLForecast @jmoralez (#426)
  • support step_size selection in optimization.mlforecast_objective @bchaoss (#419)
  • use TypeVar for dataframes and distribute py.typed file @jmoralez (#408)

v0.13.4

23 Aug 05:24
Compare
Choose a tag to compare

New Features

Documentation

  • Clear up the README for the new user @Ammar-Azman (#397)

Enhancement

v0.13.3

25 Jul 18:33
2edde26
Compare
Choose a tag to compare

Bug Fixes

  • handle no target transforms in DistributedMLForecast.to_local @jmoralez (#388)

Enhancement

v0.13.2

17 Jul 19:27
Compare
Choose a tag to compare

New Features

Bug Fixes

Enhancement

  • store prediction intervals inputs in MLForecast.save @jmoralez (#383)
  • support polars in GlobalSklearnTransformer @jmoralez (#377)

v0.13.1

01 Jul 18:38
678e740
Compare
Choose a tag to compare

Dependencies

Enhancement