Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support omnivision inference #256

Merged
merged 2 commits into from
Nov 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions nexa/transformers/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
# transformers support for Nexa AI models

```
python run_omnivision.py
```

## Acknowledgements
We thank the [Hugging Face Transformers](https://github.com/huggingface/transformers) for their amazing work on the Transformers library.
Empty file added nexa/transformers/__init__.py
Empty file.
Empty file.
130 changes: 130 additions & 0 deletions nexa/transformers/omnivision/configuration.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
# Copyright (c) 2024 Nexa AI Inc., Alibaba Group (Qwen team), and HuggingFace Inc.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" Qwen2 model configuration"""

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from typing import Union
from transformers import PretrainedConfig
import os
from transformers.models.auto import CONFIG_MAPPING

logger = logging.get_logger(__name__)


class SigLipVisionConfig(PretrainedConfig):
model_type = "siglip_vision_model"
def __init__(
self,
hidden_size=1152,
image_mean=(0.5, 0.5, 0.5),
intermediate_size=4304,
num_hidden_layers=27,
num_attention_heads=16,
num_channels=3,
image_size=384,
patch_size=14,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.image_mean = image_mean

@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)

config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

# get the vision config dict if we are loading from SigLipConfig
if config_dict.get("model_type") == "siglip":
config_dict = config_dict["vision_config"]

if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)


""" Nexa AI model configuration"""
class OminiVLMConfig(PretrainedConfig):
model_type = "nano-omini-vlm"

model_type = "omini_vlm"
keys_to_ignore_at_inference = ["past_key_values"]

def __init__(
self,
vision_config=None,
text_config=None,
hidden_size=4096,
mm_hidden_size=1152,
mm_projector_lr=None,
mm_projector_type="mlp2x_gelu",
image_token_index=151655,
initializer_range=0.02,
**kwargs,
):
self.hidden_size = hidden_size
self.mm_hidden_size = mm_hidden_size
self.mm_projector_lr = mm_projector_lr
self.mm_projector_type = mm_projector_type
self.image_token_index = image_token_index
self.initializer_range = initializer_range
if isinstance(vision_config, dict):
vision_config = SigLipVisionConfig(**vision_config)
elif vision_config is None:
vision_config = SigLipVisionConfig(
hidden_size=1152,
image_mean=(0.5, 0.5, 0.5),
intermediate_size=4304,
num_hidden_layers=27,
num_attention_heads=16,
num_channels=3,
image_size=384,
patch_size=14,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
)
self.vision_config = vision_config

if isinstance(text_config, dict):
text_config["model_type"] = (
text_config["model_type"] if "model_type" in text_config else "qwen2"
)
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
text_config = CONFIG_MAPPING["qwen2"]()

self.text_config = text_config

super().__init__(**kwargs)

Loading
Loading