-
Notifications
You must be signed in to change notification settings - Fork 92
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[ENH] Integrate trials object with Unitary Event Analysis (UE) #643
Open
Moritz-Alexander-Kern
wants to merge
8
commits into
NeuralEnsemble:master
Choose a base branch
from
INM-6:enh/trials_unitary_event_analysis
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
8 commits
Select commit
Hold shift + click to select a range
7b24455
add trial handling to jointJ_window_analysis
Moritz-Alexander-Kern 2d4f92d
add tests for trial object
Moritz-Alexander-Kern 1f36584
use trial object in UE tutorial
Moritz-Alexander-Kern 84b8449
update notebook plotting function to accept trial object
Moritz-Alexander-Kern 5e8c4e3
clear notebook outputs
Moritz-Alexander-Kern 6ae9f1b
use decorator for converting trials
Moritz-Alexander-Kern 167361d
clear notebook outputs
Moritz-Alexander-Kern 594e002
Merge branch 'master' into enh/trials_unitary_event_analysis
Moritz-Alexander-Kern File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -13,6 +13,7 @@ | |
import quantities as pq | ||
from numpy.testing import assert_array_equal | ||
|
||
from elephant.trials import TrialsFromLists | ||
import elephant.unitary_event_analysis as ue | ||
from elephant.datasets import download, ELEPHANT_TMP_DIR | ||
from numpy.testing import assert_array_almost_equal | ||
|
@@ -324,52 +325,56 @@ def test_jointJ_window_analysis(self): | |
sts2 = self.sts2_neo | ||
|
||
# joinJ_window_analysis requires the following: | ||
# A list of spike trains(neo.SpikeTrain objects) in different trials: | ||
data = list(zip(*[sts1,sts2])) | ||
|
||
win_size = 100 * pq.ms | ||
bin_size = 5 * pq.ms | ||
win_step = 20 * pq.ms | ||
pattern_hash = [3] | ||
UE_dic = ue.jointJ_window_analysis(spiketrains=data, | ||
pattern_hash=pattern_hash, | ||
bin_size=bin_size, | ||
win_size=win_size, | ||
win_step=win_step) | ||
expected_Js = np.array( | ||
[0.57953708, 0.47348757, 0.1729669, | ||
0.01883295, -0.21934742, -0.80608759]) | ||
expected_n_emp = np.array( | ||
[9., 9., 7., 7., 6., 6.]) | ||
expected_n_exp = np.array( | ||
[6.5, 6.85, 6.05, 6.6, 6.45, 8.7]) | ||
expected_rate = np.array( | ||
[[0.02166667, 0.01861111], | ||
[0.02277778, 0.01777778], | ||
[0.02111111, 0.01777778], | ||
[0.02277778, 0.01888889], | ||
[0.02305556, 0.01722222], | ||
[0.02388889, 0.02055556]]) * pq.kHz | ||
expected_indecis_tril26 = [4., 4.] | ||
expected_indecis_tril4 = [1.] | ||
assert_array_almost_equal(UE_dic['Js'].squeeze(), expected_Js) | ||
assert_array_almost_equal(UE_dic['n_emp'].squeeze(), expected_n_emp) | ||
assert_array_almost_equal(UE_dic['n_exp'].squeeze(), expected_n_exp) | ||
assert_array_almost_equal(UE_dic['rate_avg'].squeeze(), expected_rate) | ||
assert_array_almost_equal(UE_dic['indices']['trial26'], | ||
expected_indecis_tril26) | ||
assert_array_almost_equal(UE_dic['indices']['trial4'], | ||
expected_indecis_tril4) | ||
|
||
# check the input parameters | ||
input_params = UE_dic['input_parameters'] | ||
self.assertEqual(input_params['pattern_hash'], pattern_hash) | ||
self.assertEqual(input_params['bin_size'], bin_size) | ||
self.assertEqual(input_params['win_size'], win_size) | ||
self.assertEqual(input_params['win_step'], win_step) | ||
self.assertEqual(input_params['method'], 'analytic_TrialByTrial') | ||
self.assertEqual(input_params['t_start'], 0 * pq.s) | ||
self.assertEqual(input_params['t_stop'], 200 * pq.ms) | ||
Comment on lines
-330
to
-372
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Only indentation level changed. |
||
# A list of spike trains(neo.SpikeTrain objects) in different trials, or trials.Trial object | ||
test_cases = ( | ||
list(zip(*[sts1, sts2])), # list | ||
TrialsFromLists(list(zip(*[sts1, sts2]))), # Trial object | ||
) | ||
for data in test_cases: | ||
with self.subTest(data=data): | ||
win_size = 100 * pq.ms | ||
bin_size = 5 * pq.ms | ||
win_step = 20 * pq.ms | ||
pattern_hash = [3] | ||
UE_dic = ue.jointJ_window_analysis(spiketrains=data, | ||
pattern_hash=pattern_hash, | ||
bin_size=bin_size, | ||
win_size=win_size, | ||
win_step=win_step) | ||
expected_Js = np.array( | ||
[0.57953708, 0.47348757, 0.1729669, | ||
0.01883295, -0.21934742, -0.80608759]) | ||
expected_n_emp = np.array( | ||
[9., 9., 7., 7., 6., 6.]) | ||
expected_n_exp = np.array( | ||
[6.5, 6.85, 6.05, 6.6, 6.45, 8.7]) | ||
expected_rate = np.array( | ||
[[0.02166667, 0.01861111], | ||
[0.02277778, 0.01777778], | ||
[0.02111111, 0.01777778], | ||
[0.02277778, 0.01888889], | ||
[0.02305556, 0.01722222], | ||
[0.02388889, 0.02055556]]) * pq.kHz | ||
expected_indecis_tril26 = [4., 4.] | ||
expected_indecis_tril4 = [1.] | ||
assert_array_almost_equal(UE_dic['Js'].squeeze(), expected_Js) | ||
assert_array_almost_equal(UE_dic['n_emp'].squeeze(), expected_n_emp) | ||
assert_array_almost_equal(UE_dic['n_exp'].squeeze(), expected_n_exp) | ||
assert_array_almost_equal(UE_dic['rate_avg'].squeeze(), expected_rate) | ||
assert_array_almost_equal(UE_dic['indices']['trial26'], | ||
expected_indecis_tril26) | ||
assert_array_almost_equal(UE_dic['indices']['trial4'], | ||
expected_indecis_tril4) | ||
|
||
# check the input parameters | ||
input_params = UE_dic['input_parameters'] | ||
self.assertEqual(input_params['pattern_hash'], pattern_hash) | ||
self.assertEqual(input_params['bin_size'], bin_size) | ||
self.assertEqual(input_params['win_size'], win_size) | ||
self.assertEqual(input_params['win_step'], win_step) | ||
self.assertEqual(input_params['method'], 'analytic_TrialByTrial') | ||
self.assertEqual(input_params['t_start'], 0 * pq.s) | ||
self.assertEqual(input_params['t_stop'], 200 * pq.ms) | ||
|
||
@staticmethod | ||
def load_gdf2Neo(fname, trigger, t_pre, t_post): | ||
|
@@ -501,69 +506,74 @@ def test_multiple_neurons(self): | |
np.random.seed(12) | ||
|
||
# Create a list of lists containing 3 Trials with 5 spiketrains | ||
spiketrains = \ | ||
spiketrains_poisson = \ | ||
[StationaryPoissonProcess( | ||
rate=50 * pq.Hz, t_stop=1 * pq.s).generate_n_spiketrains(5) | ||
for _ in range(3)] | ||
|
||
spiketrains = list(zip(*spiketrains)) | ||
UE_dic = ue.jointJ_window_analysis(spiketrains, bin_size=5 * pq.ms, | ||
win_size=300 * pq.ms, | ||
win_step=100 * pq.ms) | ||
|
||
js_expected = [[0.3978179], | ||
[0.08131966], | ||
[-1.4239882], | ||
[-0.9377029], | ||
[-0.3374434], | ||
[-0.2043383], | ||
[-1.001536], | ||
[-np.inf]] | ||
indices_expected = \ | ||
{'trial3': [12, 27, 31, 34, 27, 31, 34, 136, 136, 136], | ||
'trial4': [4, 60, 60, 60, 117, 117, 117]} | ||
n_emp_expected = [[5.], | ||
[4.], | ||
[1.], | ||
[2.], | ||
[2.], | ||
[2.], | ||
[1.], | ||
[0.]] | ||
n_exp_expected = [[3.5591667], | ||
[3.4536111], | ||
[3.3158333], | ||
[3.8466666], | ||
[2.370278], | ||
[2.0811112], | ||
[2.4011111], | ||
[3.0533333]] | ||
rate_expected = [[[0.042, 0.03933334, 0.048]], | ||
[[0.04533333, 0.038, 0.05]], | ||
[[0.046, 0.04, 0.04666667]], | ||
[[0.05066667, 0.042, 0.046]], | ||
[[0.04466667, 0.03666667, 0.04066667]], | ||
[[0.04066667, 0.03533333, 0.04333333]], | ||
[[0.03933334, 0.038, 0.038]], | ||
[[0.04066667, 0.04866667, 0.03666667]]] * (1. / pq.ms) | ||
input_parameters_expected = {'pattern_hash': [7], | ||
'bin_size': 5 * pq.ms, | ||
'win_size': 300 * pq.ms, | ||
'win_step': 100 * pq.ms, | ||
'method': 'analytic_TrialByTrial', | ||
't_start': 0 * pq.s, | ||
't_stop': 1 * pq.s, 'n_surrogates': 100} | ||
|
||
assert_array_almost_equal(UE_dic['Js'], js_expected) | ||
assert_array_almost_equal(UE_dic['n_emp'], n_emp_expected) | ||
assert_array_almost_equal(UE_dic['n_exp'], n_exp_expected) | ||
assert_array_almost_equal(UE_dic['rate_avg'], rate_expected) | ||
self.assertEqual(sorted(UE_dic['indices'].keys()), | ||
sorted(indices_expected.keys())) | ||
for trial_key in indices_expected.keys(): | ||
assert_array_equal(indices_expected[trial_key], | ||
UE_dic['indices'][trial_key]) | ||
self.assertEqual(UE_dic['input_parameters'], input_parameters_expected) | ||
Comment on lines
-510
to
-566
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Only indentation level changed. |
||
test_cases = ( | ||
list(zip(*spiketrains_poisson)), # list | ||
TrialsFromLists(list(zip(*spiketrains_poisson))), # Trial object | ||
) | ||
for spiketrains in test_cases: | ||
with self.subTest(data=spiketrains): | ||
UE_dic = ue.jointJ_window_analysis(spiketrains, bin_size=5 * pq.ms, | ||
win_size=300 * pq.ms, | ||
win_step=100 * pq.ms) | ||
|
||
js_expected = [[0.3978179], | ||
[0.08131966], | ||
[-1.4239882], | ||
[-0.9377029], | ||
[-0.3374434], | ||
[-0.2043383], | ||
[-1.001536], | ||
[-np.inf]] | ||
indices_expected = \ | ||
{'trial3': [12, 27, 31, 34, 27, 31, 34, 136, 136, 136], | ||
'trial4': [4, 60, 60, 60, 117, 117, 117]} | ||
n_emp_expected = [[5.], | ||
[4.], | ||
[1.], | ||
[2.], | ||
[2.], | ||
[2.], | ||
[1.], | ||
[0.]] | ||
n_exp_expected = [[3.5591667], | ||
[3.4536111], | ||
[3.3158333], | ||
[3.8466666], | ||
[2.370278], | ||
[2.0811112], | ||
[2.4011111], | ||
[3.0533333]] | ||
rate_expected = [[[0.042, 0.03933334, 0.048]], | ||
[[0.04533333, 0.038, 0.05]], | ||
[[0.046, 0.04, 0.04666667]], | ||
[[0.05066667, 0.042, 0.046]], | ||
[[0.04466667, 0.03666667, 0.04066667]], | ||
[[0.04066667, 0.03533333, 0.04333333]], | ||
[[0.03933334, 0.038, 0.038]], | ||
[[0.04066667, 0.04866667, 0.03666667]]] * (1. / pq.ms) | ||
input_parameters_expected = {'pattern_hash': [7], | ||
'bin_size': 5 * pq.ms, | ||
'win_size': 300 * pq.ms, | ||
'win_step': 100 * pq.ms, | ||
'method': 'analytic_TrialByTrial', | ||
't_start': 0 * pq.s, | ||
't_stop': 1 * pq.s, 'n_surrogates': 100} | ||
|
||
assert_array_almost_equal(UE_dic['Js'], js_expected) | ||
assert_array_almost_equal(UE_dic['n_emp'], n_emp_expected) | ||
assert_array_almost_equal(UE_dic['n_exp'], n_exp_expected) | ||
assert_array_almost_equal(UE_dic['rate_avg'], rate_expected) | ||
self.assertEqual(sorted(UE_dic['indices'].keys()), | ||
sorted(indices_expected.keys())) | ||
for trial_key in indices_expected.keys(): | ||
assert_array_equal(indices_expected[trial_key], | ||
UE_dic['indices'][trial_key]) | ||
self.assertEqual(UE_dic['input_parameters'], input_parameters_expected) | ||
|
||
|
||
if __name__ == '__main__': | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
plot_ue
should accept trial object (-> later in Viziphant)plot_ue
function in Viziphant