Skip to content

Offline Speech Recognition with OpenAI Whisper and TensorFlow Lite for Android

License

Notifications You must be signed in to change notification settings

Neu070224/whisper_android

 
 

Repository files navigation

Offline Speech Recognition with OpenAI Whisper and TensorFlow Lite

This guide explains how to integrate Whisper and Recorder class in Android apps for audio recording and speech recognition.

Whisper ASR Integration Guide

Here are separate code snippets for using Whisper and Recorder:

Whisper (Speech Recognition)

Initialization and Configuration:

// Initialize Whisper
Whisper mWhisper = new Whisper(this); // Create Whisper instance

// Load model and vocabulary for Whisper
String modelPath = getFilePath("whisper-tiny.tflite"); // Provide model file path
String vocabPath = getFilePath("filters_vocab_multilingual.bin"); // Provide vocabulary file path
mWhisper.loadModel(modelPath, vocabPath, true); // Load model and set multilingual mode

// Set a listener for Whisper to handle updates and results
mWhisper.setListener(new IWhisperListener() {
    @Override
    public void onUpdateReceived(String message) {
        // Handle Whisper status updates
    }

    @Override
    public void onResultReceived(String result) {
        // Handle transcribed results
    }
});

Transcription:

// Set the audio file path for transcription. Audio format should be in 16K, mono, 16bits
String waveFilePath = getFilePath("your_audio_file.wav"); // Provide audio file path
mWhisper.setFilePath(waveFilePath); // Set audio file path

// Start transcription
mWhisper.setAction(Whisper.ACTION_TRANSCRIBE); // Set action to transcription
mWhisper.start(); // Start transcription

// Perform other operations
// Add your additional code here

// Stop transcription
mWhisper.stop(); // Stop transcription

Recorder (Audio Recording)

Initialization and Configuration:

// Initialize Recorder
Recorder mRecorder = new Recorder(this); // Create Recorder instance

// Set a listener for Recorder to handle updates and audio data
mRecorder.setListener(new IRecorderListener() {
    @Override
    public void onUpdateReceived(String message) {
        // Handle Recorder status updates
    }

    @Override
    public void onDataReceived(float[] samples) {
        // Handle audio data received during recording
        // You can forward this data to Whisper for live recognition using writeBuffer()
        // mWhisper.writeBuffer(samples);
    }
});

Recording:

// Check and request recording permissions
checkRecordPermission(); // Check and request recording permissions

// Set the audio file path for recording. It record audio in 16K, mono, 16bits format
String waveFilePath = getFilePath("your_audio_file.wav"); // Provide audio file path
mRecorder.setFilePath(waveFilePath); // Set audio file path

// Start recording
mRecorder.start(); // Start recording

// Perform other operations
// Add your additional code here

// Stop recording
mRecorder.stop(); // Stop recording

Please adapt these code snippets to your specific use case, provide the correct file paths, and handle exceptions appropriately in your application.

Note: Ensure that you have the necessary permissions, error handling, and file path management in your application when using the Recorder class.

Demo Video

Video

Important Note

Whisper ASR is a powerful tool for transcribing speech into text. However, keep in mind that handling audio data and transcriptions may require careful synchronization and error handling in your Android application to ensure a smooth user experience.

Enjoy using the Whisper ASR Android app to enhance your speech recognition capabilities!

About

Offline Speech Recognition with OpenAI Whisper and TensorFlow Lite for Android

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 52.6%
  • C 29.9%
  • Python 3.6%
  • Java 2.1%
  • Starlark 1.8%
  • Rust 1.5%
  • Other 8.5%