Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Turn ConstPolyRing example into a doctest #1894

Merged
merged 5 commits into from
Nov 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion docs/src/polynomial.md
Original file line number Diff line number Diff line change
Expand Up @@ -789,7 +789,6 @@ julia> R, x = polynomial_ring(ZZ, :x)
julia> S, y = polynomial_ring(R, :y)
(Univariate polynomial ring in y over univariate polynomial ring, y)


julia> f = x*y^2 + (x + 1)*y + 3
x*y^2 + (x + 1)*y + 3

Expand Down
67 changes: 56 additions & 11 deletions docs/src/ring_interface.md
Original file line number Diff line number Diff line change
Expand Up @@ -762,22 +762,23 @@ permitted.
Here is a minimal example of implementing the Ring Interface for a constant
polynomial type (i.e. polynomials of degree less than one).

```julia
```jldoctest ConstPoly
# ConstPoly.jl : Implements constant polynomials

using AbstractAlgebra

using Random: Random, SamplerTrivial, GLOBAL_RNG
using RandomExtensions: RandomExtensions, Make2, AbstractRNG
using AbstractAlgebra.RandomExtensions: RandomExtensions, Make2, AbstractRNG

import AbstractAlgebra: parent_type, elem_type, base_ring, base_ring_type, parent, is_domain_type,
is_exact_type, canonical_unit, isequal, divexact, zero!, mul!, add!,
get_cached!, is_unit, characteristic, Ring, RingElem, expressify
get_cached!, is_unit, characteristic, Ring, RingElem, expressify,
@show_name, @show_special, is_terse, pretty, terse, Lowercase

import Base: show, +, -, *, ^, ==, inv, isone, iszero, one, zero, rand,
deepcopy_internal, hash

mutable struct ConstPolyRing{T <: RingElement} <: Ring
@attributes mutable struct ConstPolyRing{T <: RingElement} <: Ring
base_ring::Ring

function ConstPolyRing{T}(R::Ring, cached::Bool) where T <: RingElement
Expand Down Expand Up @@ -846,8 +847,13 @@ canonical_unit(f::ConstPoly) = canonical_unit(f.c)
# String I/O

function show(io::IO, R::ConstPolyRing)
print(io, "Constant polynomials over ")
show(io, base_ring(R))
@show_name(io, R)
@show_special(io, R)
print(io, "Constant polynomials")
if !is_terse(io)
io = pretty(io)
print(terse(io), " over ", Lowercase(), base_ring(R))
end
end

function show(io::IO, f::ConstPoly)
Expand Down Expand Up @@ -928,6 +934,11 @@ function zero!(f::ConstPoly)
return f
end

function one!(f::ConstPoly)
f.c = one(base_ring(parent(f)))
return f
end

function mul!(f::ConstPoly{T}, g::ConstPoly{T}, h::ConstPoly{T}) where T <: RingElement
f.c = g.c*h.c
return f
Expand Down Expand Up @@ -996,19 +1007,53 @@ function constant_polynomial_ring(R::Ring, cached::Bool=true)
T = elem_type(R)
return ConstPolyRing{T}(R, cached)
end

# output

constant_polynomial_ring (generic function with 2 methods)
```

The above implementation of `constant_polynomial_ring` may be tested as follows.

```julia
```jldoctest ConstPoly; filter = r".*"s
using Test
include(joinpath(pathof(AbstractAlgebra), "..", "..", "test", "Rings-conformance-tests.jl"))

S, _ = polynomial_ring(QQ, :x)
function test_elem(R::ConstPolyRing{elem_type(ZZ)})
n = rand(1:999)
return R(rand(-n:n))
end

function test_elem(R::ConstPolyRing{elem_type(S)})
return R(rand(base_ring(R), 1:6, -999:999))
test_Ring_interface(constant_polynomial_ring(ZZ))

# output
Test Summary: | Pass Total Time
Ring interface for Constant polynomials over integers of type ConstPolyRing{BigInt} | 13844 13844 0.9s
```

Note that we only showed a minimal implementation of the ring interface.
Additional interfaces exists, e.g. for Euclidean rings. Additional interface
usually require implementing additional methods, and in some cases we also
provide additional conformance tests. In this case, just one necessary
method is missing.

```jldoctest ConstPoly
function Base.divrem(a::ConstPoly{elem_type(ZZ)}, b::ConstPoly{elem_type(ZZ)})
check_parent(a, b)
q, r = AbstractAlgebra.divrem(a.c, b.c)
return parent(a)(q), parent(a)(r)
end

test_Ring_interface(constant_polynomial_ring(S))
# output

```

We can test it like this.

```jldoctest ConstPoly; filter = r".*"s
test_EuclideanRing_interface(constant_polynomial_ring(ZZ))

# output
Test Summary: | Pass Total Time
Euclidean Ring interface for Constant polynomials over integers of type ConstPolyRing{BigInt} | 2212 2212 0.1s
```
1 change: 0 additions & 1 deletion test/Rings-test.jl
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,6 @@ include("algorithms/MPolyEvaluate-test.jl")
include("algorithms/MPolyFactor-test.jl")
include("algorithms/MPolyNested-test.jl")
include("algorithms/DensePoly-test.jl")
include("algorithms/GenericFunctions-test.jl")
include("algorithms/coprime_base-test.jl")
include("generic/PolyRingHom-test.jl")

Expand Down
Loading
Loading