Official Code Release accompanying the WACV 2022 paper "Revealing Disocclusions in Temporal View Synthesis through Infilling Vector Prediction"
- Download the IISc VEED Database. Extract the zip files and place them in
Data/Veed
. - For SceneNet database, download all the ground truth for the training set from here. Extract the zip files and place them in
Data/SceneNet
. The following steps describe training and testing on IISc VEED dataset. The steps for SceneNet dataset are similar and the code for each step is also provided.
Environment details are available in IVP.yml
for conda
and requirements.txt
for pip. To create the environment using conda
conda env create -f IVP.yml
- To train the IVP model on IISc VEED dataset,
cd src
python Trainer.py --configs configs/Configs_VEED.json --generate_data --correct_depth
cd ..
Our model generates some data before starting training. The --generate_data
flag instructs the Trainer.py
to generate this data. If the data has already been generated, this flag can be omitted.
Many datasets have errors in the depth maps, usually at the foreground-background boundaries. The correct_depth
flag corrects this depth before further processing. If you have clean depth and do not want to employ depth correction, omit this flag. More details about depth correction can be found here.
To train on SceneNet dataset, use the configs here.
- To run inference on IISc VEED dataset,
cd src
python Test.py --configs configs/Configs_VEED.json --generate_data --correct_depth --test_num 3
cd ..
The configs
parameter and generate_data
and correct_depth
flags are similar to the training code.
The predicted frames will be saved in a folder named Test0003
. You can specify different test_num
if testing on different datasets with the same trained model.
@inproceedings{kanchana2022ivp,
title = {Revealing Disocclusions in Temporal View Synthesis through Infilling Vector Prediction},
author = {Kanchana, Vijayalakshmi and Somraj, Nagabhushan and Yadwad, Suraj and Soundararajan, Rajiv},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
pages = {3541--3550},
month = {January},
year = {2022},
doi = {10.1109/WACV51458.2022.00315}
}
The code for depth based warping is borrowed from here.
For any queries or bugs related to either the IVP code or the IISc VEED database, please raise an issue.