-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
605 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
""" | ||
This file used to add augmented images to our dataset for classes with lack of images according to the output of the "sets_visualization". | ||
""" | ||
import pickle | ||
import numpy as np | ||
from tqdm import tqdm | ||
import matplotlib.pyplot as plt | ||
from skimage.transform import rotate | ||
|
||
x_train = pickle.load(open('train_val_test_sets6/after_aug/x_train', 'rb')) | ||
y_train = pickle.load(open('train_val_test_sets6/after_aug/y_train', 'rb')) | ||
x_val = pickle.load(open('train_val_test_sets6/x_val', 'rb')) | ||
y_val = pickle.load(open('train_val_test_sets6/y_val', 'rb')) | ||
x_test = pickle.load(open('train_val_test_sets6/x_test', 'rb')) | ||
y_test = pickle.load(open('train_val_test_sets6/y_test', 'rb')) | ||
|
||
x_t = len(x_train) | ||
x_copy = x_train.copy() | ||
count = 0 | ||
ecz, ker, ros = 0, 0, 0 | ||
for i in tqdm(range(x_t)): | ||
if y_train[i] == 0: | ||
x_train = np.append(x_train, [rotate(x_copy[i], angle=45, mode='wrap')], axis=0) | ||
y_train = np.append(y_train, 0) | ||
|
||
elif y_train[i] == 2: | ||
if ecz % 3 == 0: | ||
x_train = np.append(x_train, [rotate(x_copy[i], angle=45, mode='wrap')], axis=0) | ||
x_train = np.append(x_train, [np.flipud(x_copy[i])], axis=0) | ||
for j in range(2): | ||
y_train = np.append(y_train, 2) | ||
ecz += 1 | ||
|
||
elif y_train[i] == 3: | ||
if ker % 6 == 0: | ||
x_train = np.append(x_train, [rotate(x_copy[i], angle=45, mode='wrap')], axis=0) | ||
x_train = np.append(x_train, [np.flipud(x_copy[i])], axis=0) | ||
for j in range(2): | ||
y_train = np.append(y_train, 3) | ||
ker += 1 | ||
|
||
elif y_train[i] == 4: | ||
x_train = np.append(x_train, [rotate(x_copy[i], angle=45, mode='wrap')], axis=0) | ||
x_train = np.append(x_train, [np.flipud(x_copy[i])], axis=0) | ||
x_train = np.append(x_train, [np.fliplr(x_copy[i])], axis=0) | ||
x_train = np.append(x_train, [rotate(np.fliplr(x_copy[i]), angle=270, mode='wrap')], axis=0) | ||
for j in range(4): | ||
y_train = np.append(y_train, 4) | ||
|
||
elif y_train[i] == 5: | ||
if ros % 9 == 0: | ||
x_train = np.append(x_train, [rotate(x_copy[i], angle=45, mode='wrap')], axis=0) | ||
x_train = np.append(x_train, [np.flipud(x_copy[i])], axis=0) | ||
for j in range(2): | ||
y_train = np.append(y_train, 5) | ||
ros += 1 | ||
|
||
indices = np.random.permutation(len(x_train)) | ||
x_train = x_train[indices] | ||
y_train = y_train[indices] | ||
|
||
f = open("dir../after_aug/x_train", "wb") | ||
pickle.dump(x_train, f) | ||
f.close() | ||
f = open("dir../after_aug/y_train", "wb") | ||
pickle.dump(y_train, f) | ||
f.close() | ||
|
||
f = open("dir../after_aug/x_val", "wb") | ||
pickle.dump(x_val, f) | ||
f.close() | ||
f = open("dir../after_aug/y_val", "wb") | ||
pickle.dump(y_val, f) | ||
f.close() | ||
|
||
f = open("dir../after_aug/x_test", "wb") | ||
pickle.dump(x_test, f) | ||
f.close() | ||
f = open("dir../after_aug/y_test", "wb") | ||
pickle.dump(y_test, f) | ||
f.close() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
""" | ||
This file used to evaluate our model for fine-tuning and better understanding. | ||
It shows the cunfusion matrix, accuracy & loss histogram and classification report. | ||
""" | ||
|
||
import numpy as np | ||
import tensorflow.keras as K | ||
import pickle | ||
from sklearn.metrics import (ConfusionMatrixDisplay, confusion_matrix, classification_report) | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
x_test = pickle.load(open('train_val_test_sets6/x_test', 'rb')) | ||
y_test = pickle.load(open('train_val_test_sets6/y_test', 'rb')) | ||
|
||
with open('hist_dir..', "rb") as file_pi: | ||
hist = pickle.load(file_pi) | ||
|
||
model = K.models.load_model("model_dir..") | ||
|
||
predictions = model.predict(x_test) | ||
test_pred = np.argmax(predictions, axis=1) | ||
|
||
types = ['acne', 'carcinoma', 'eczema', 'keratosis', 'mila', 'rosacea'] | ||
|
||
cm = confusion_matrix(y_test, test_pred) # confusion matrix | ||
print("Confusion Matrix\n", cm) | ||
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=types) | ||
fig, ax = plt.subplots(figsize=(15, 15)) | ||
disp.plot(ax=ax, cmap=plt.cm.Blues) | ||
plt.show() | ||
|
||
acc_arr, val_acc_arr = [0.0], [0.0] | ||
for i in hist['accuracy']: | ||
acc_arr.append(i) | ||
for i in hist['val_accuracy']: | ||
val_acc_arr.append(i) | ||
plt.plot(acc_arr) # plot accuracy vs epoch | ||
plt.plot(val_acc_arr) | ||
plt.title('Model accuracy') | ||
plt.ylabel('Accuracy') | ||
plt.xlabel('Epoch') | ||
plt.legend(['Train', 'Test'], loc='upper left') | ||
plt.ylim(bottom=0) | ||
plt.xlim(left=0) | ||
plt.xticks(np.arange(0, 25, 2)) | ||
plt.grid() | ||
plt.show() | ||
|
||
loss_arr, val_loss_arr = [0.0], [0.0] | ||
for i in hist['loss']: | ||
loss_arr.append(i) | ||
for i in hist['val_loss']: | ||
val_loss_arr.append(i) | ||
plt.plot(loss_arr) # Plot loss values vs epoch | ||
plt.plot(val_loss_arr) | ||
plt.title('Model loss') | ||
plt.ylabel('Loss') | ||
plt.xlabel('Epoch') | ||
plt.legend(['Train', 'Test'], loc='upper left') | ||
plt.ylim(bottom=0) | ||
plt.xlim(left=0) | ||
plt.xticks(np.arange(0, 25, 2)) | ||
plt.grid() | ||
plt.show() | ||
|
||
for i in range(6): | ||
print(f'{types[i]} - {((cm[i][i] / sum(cm[i])) * 100):.2f}%') | ||
|
||
print("\nclassification_report: \n" + str(classification_report(y_test, test_pred))) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
""" | ||
This file used to build our model | ||
""" | ||
import pickle | ||
from keras import Model | ||
import tensorflow.keras as K | ||
from keras.optimizers import Adam | ||
from keras.callbacks import ModelCheckpoint | ||
from keras.layers import GlobalAveragePooling2D, BatchNormalization, Dense, Dropout | ||
|
||
x_train = pickle.load(open('dir../after_aug/x_train', 'rb')) | ||
y_train = pickle.load(open('dir../after_aug/y_train', 'rb')) | ||
x_val = pickle.load(open('dir../after_aug/x_val', 'rb')) | ||
y_val = pickle.load(open('dir../after_aug/y_val', 'rb')) | ||
x_test = pickle.load(open('dir../after_aug/x_test', 'rb')) | ||
y_test = pickle.load(open('dir../after_aug/y_test', 'rb')) | ||
|
||
base_model = K.applications.Xception(include_top=False, | ||
weights='imagenet', | ||
input_tensor=None, | ||
input_shape=(299, 299, 3), | ||
pooling=None, | ||
classifier_activation="softmax", | ||
) | ||
base_model.trainable = False | ||
|
||
inputs = K.Input(shape=(299, 299, 3)) | ||
|
||
x = base_model(inputs, training=False) | ||
x = GlobalAveragePooling2D()(x) | ||
x = BatchNormalization()(x) | ||
x = Dropout(0.3)(x) | ||
|
||
x = Dense(256, activation='relu')(x) | ||
x = BatchNormalization()(x) | ||
x = Dropout(0.3)(x) | ||
|
||
x = Dense(128, activation='relu')(x) | ||
x = BatchNormalization()(x) | ||
x = Dropout(0.3)(x) | ||
|
||
outputs = Dense(6, activation='softmax')(x) # final layer | ||
|
||
model = Model(inputs, outputs) | ||
|
||
opt = Adam(learning_rate=0.001) | ||
model.compile(loss='sparse_categorical_crossentropy', | ||
optimizer=opt, | ||
metrics=['accuracy']) | ||
acc_checkpoint = ModelCheckpoint("dir../first_train/max_acc", monitor='val_accuracy', verbose=1, save_best_only=True, mode='max') | ||
loss_checkpoint = ModelCheckpoint("dir../first_train/min_loss", monitor='val_loss', verbose=1, save_best_only=True, mode='min') | ||
callbacks_list = [acc_checkpoint, loss_checkpoint] | ||
|
||
hist = model.fit(x_train, y_train, epochs=15, validation_data=(x_val, y_val), batch_size=32, callbacks=callbacks_list) | ||
|
||
with open('dir../first/hist', 'wb') as file_pi: | ||
pickle.dump(hist.history, file_pi) | ||
|
||
|
||
base_model.trainable = True | ||
|
||
opt = Adam(learning_rate=0.00001) | ||
model.compile(loss='sparse_categorical_crossentropy', | ||
optimizer=opt, | ||
metrics=['accuracy']) | ||
|
||
acc_checkpoint = ModelCheckpoint("dir../second_train/max_acc", monitor='val_accuracy', verbose=1, save_best_only=True, mode='max') | ||
loss_checkpoint = ModelCheckpoint("dir../second_train/min_loss", monitor='val_loss', verbose=1, save_best_only=True, mode='min') | ||
callbacks_list = [acc_checkpoint, loss_checkpoint] | ||
|
||
hist = model.fit(x_train, y_train, epochs=10, validation_data=(x_val, y_val), batch_size=32, callbacks=callbacks_list) | ||
|
||
with open('dir../second/hist', 'wb') as file_pi: | ||
pickle.dump(hist.history, file_pi) |
Binary file not shown.
Large diffs are not rendered by default.
Oops, something went wrong.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
""" | ||
This file used to load our model and predict batch of images from a directory. | ||
""" | ||
import os | ||
import numpy as np | ||
from tqdm import tqdm | ||
import tensorflow.keras as K | ||
from tensorflow.keras.preprocessing import image | ||
from tensorflow.keras.preprocessing.image import img_to_array | ||
|
||
model = K.models.load_model("model_dir..") | ||
types = ['acne', 'carcinoma', 'eczema', 'keratosis', 'millia', 'rosacea'] | ||
|
||
img_path = os.listdir('images_to_predict_dir..') | ||
for i in tqdm(img_path): | ||
fname = 'pic to check'+'/'+i | ||
img = image.load_img(fname, target_size=(299, 299)) | ||
x = img_to_array(img) | ||
x = K.applications.xception.preprocess_input(x) | ||
|
||
prediction = model.predict(np.array([x]))[0] | ||
test_pred = np.argmax(prediction) | ||
|
||
result = [(types[i], float(prediction[i]) * 100.0) for i in range(len(prediction))] | ||
result.sort(reverse=True, key=lambda x: x[1]) | ||
|
||
print(f'Image name: {i}') | ||
for j in range(6): | ||
(class_name, prob) = result[j] | ||
print("Top %d ====================" % (j + 1)) | ||
print(class_name + ": %.2f%%" % (prob)) | ||
|
||
print("\n") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
""" | ||
This file used to load the entire dataset, perform the require preprocessing and split the data into train, validation and test sets | ||
""" | ||
import os | ||
import pickle | ||
import numpy as np | ||
import seaborn as sns | ||
from tqdm import tqdm | ||
import tensorflow.keras as K | ||
import matplotlib.pyplot as plt | ||
from tensorflow.keras.preprocessing import image | ||
from sklearn.model_selection import StratifiedShuffleSplit | ||
from tensorflow.keras.preprocessing.image import img_to_array | ||
|
||
|
||
img_path = os.listdir('dataset_dir') | ||
|
||
features = [] | ||
labels = [] | ||
dict = {'acne': 0, 'carcinoma': 1, 'eczema': 2, 'keratosis': 3, 'mila': 4, 'rosacea': 5} | ||
for i in tqdm(img_path): | ||
fname = 'dataset_dir'+'/'+i | ||
img = image.load_img(fname, target_size=(299, 299)) | ||
x = img_to_array(img) | ||
x = K.applications.xception.preprocess_input(x) | ||
features.append(x) | ||
y = i.split(".")[0] | ||
labels.append(dict[y]) | ||
|
||
features = np.array(features) | ||
labels = np.array(labels) | ||
|
||
lbl, count = np.unique(labels, return_counts=True) # plot a bar plot to show the quantity of images in each class | ||
temp = {0: 'acne', 1: 'carcinoma', 2: 'eczema', 3: 'keratosis', 4: 'millia', 5: 'rosacea'} | ||
count_lbl = {} | ||
for i in range(len(lbl)): | ||
count_lbl[temp[lbl[i]]] = count[i] | ||
sns.set_theme(style="whitegrid") | ||
ax = sns.barplot(x=list(count_lbl.keys()), y=list(count_lbl.values())) | ||
for i in ax.containers: | ||
ax.bar_label(i,) | ||
plt.title('Before augmentation') | ||
plt.show() | ||
|
||
indices = np.random.permutation(len(features)) | ||
features = features[indices] | ||
labels = labels[indices] | ||
|
||
x_train, y_train, rx_test, ry_test, x_val, y_val, x_test, y_test = [], [], [], [], [], [], [], [] | ||
|
||
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=0) # split the test set | ||
for train_index, r_index in split.split(features, labels): | ||
x_train, rx_test = features[train_index], features[r_index] | ||
y_train, ry_test = labels[train_index], labels[r_index] | ||
|
||
split = StratifiedShuffleSplit(n_splits=1, test_size=0.15, random_state=0) # split the training data into training and validation sets | ||
for val_index, test_index in split.split(rx_test, ry_test): | ||
x_val, x_test = rx_test[val_index], rx_test[test_index] | ||
y_val, y_test = ry_test[val_index], ry_test[test_index] | ||
|
||
f = open("dir../x_train", "wb") | ||
pickle.dump(x_train, f) | ||
f.close() | ||
f = open("dir../y_train", "wb") | ||
pickle.dump(y_train, f) | ||
f.close() | ||
|
||
f = open("dir../x_val", "wb") | ||
pickle.dump(x_val, f) | ||
f.close() | ||
f = open("dir../y_val", "wb") | ||
pickle.dump(y_val, f) | ||
f.close() | ||
|
||
f = open("dir../x_test", "wb") | ||
pickle.dump(x_test, f) | ||
f.close() | ||
f = open("dir../y_test", "wb") | ||
pickle.dump(y_test, f) | ||
f.close() |
Oops, something went wrong.