Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bbonev/disco refactor #28

Merged
merged 9 commits into from
Dec 22, 2023
4 changes: 3 additions & 1 deletion tests/test_convolution.py
Original file line number Diff line number Diff line change
Expand Up @@ -221,8 +221,10 @@ def test_disco_convolution(
in_shape, out_shape, kernel_shape, grid_in=grid_in, grid_out=grid_out, theta_cutoff=theta_cutoff
).to(self.device)

psi = torch.sparse_coo_tensor(conv.psi_idx, conv.psi_vals, size=(conv.kernel_size, conv.nlat_out, conv.nlat_in * conv.nlon_in)).to_dense()

self.assertTrue(
torch.allclose(conv.psi.to_dense(), psi_dense[:, :, 0].reshape(-1, nlat_out, nlat_in * nlon_in))
torch.allclose(psi, psi_dense[:, :, 0].reshape(-1, nlat_out, nlat_in * nlon_in))
)

# create a copy of the weight
Expand Down
32 changes: 20 additions & 12 deletions torch_harmonics/convolution.py
Original file line number Diff line number Diff line change
Expand Up @@ -222,10 +222,12 @@ def __init__(
idx, vals = _precompute_convolution_tensor(
in_shape, out_shape, kernel_shape, grid_in=grid_in, grid_out=grid_out, theta_cutoff=theta_cutoff
)
psi = torch.sparse_coo_tensor(
idx, vals, size=(self.kernel_size, self.nlat_out, self.nlat_in * self.nlon_in)
).coalesce()
self.register_buffer("psi", psi, persistent=False)
# psi = torch.sparse_coo_tensor(
# idx, vals, size=(self.kernel_size, self.nlat_out, self.nlat_in * self.nlon_in)
# ).coalesce()
self.register_buffer("psi_idx", idx, persistent=False)
self.register_buffer("psi_vals", vals, persistent=False)
# self.register_buffer("psi", psi, persistent=False)

# groups
self.groups = groups
Expand All @@ -248,10 +250,12 @@ def forward(self, x: torch.Tensor, use_triton_kernel: bool = True) -> torch.Tens
# pre-multiply x with the quadrature weights
x = self.quad_weights * x

psi = torch.sparse_coo_tensor(self.psi_idx, self.psi_vals, size=(self.kernel_size, self.nlat_out, self.nlat_in * self.nlon_in)).coalesce()

if x.is_cuda and use_triton_kernel:
x = _disco_s2_contraction_triton(x, self.psi, self.nlon_out)
x = _disco_s2_contraction_triton(x, psi, self.nlon_out)
else:
x = _disco_s2_contraction_torch(x, self.psi, self.nlon_out)
x = _disco_s2_contraction_torch(x, psi, self.nlon_out)

# extract shape
B, C, K, H, W = x.shape
Expand Down Expand Up @@ -317,10 +321,12 @@ def __init__(
idx, vals = _precompute_convolution_tensor(
out_shape, in_shape, kernel_shape, grid_in=grid_out, grid_out=grid_in, theta_cutoff=theta_cutoff
)
psi = torch.sparse_coo_tensor(
idx, vals, size=(self.kernel_size, self.nlat_in, self.nlat_out * self.nlon_out)
).coalesce()
self.register_buffer("psi", psi, persistent=False)
# psi = torch.sparse_coo_tensor(
# idx, vals, size=(self.kernel_size, self.nlat_in, self.nlat_out * self.nlon_out)
# ).coalesce()
self.register_buffer("psi_idx", idx, persistent=False)
self.register_buffer("psi_vals", vals, persistent=False)
# self.register_buffer("psi", psi, persistent=False)

# groups
self.groups = groups
Expand Down Expand Up @@ -351,10 +357,12 @@ def forward(self, x: torch.Tensor, use_triton_kernel: bool = True) -> torch.Tens
# pre-multiply x with the quadrature weights
x = self.quad_weights * x

psi = torch.sparse_coo_tensor(self.psi_idx, self.psi_vals, size=(self.kernel_size, self.nlat_in, self.nlat_out * self.nlon_out)).coalesce()

if x.is_cuda and use_triton_kernel:
out = _disco_s2_transpose_contraction_triton(x, self.psi, self.nlon_out)
out = _disco_s2_transpose_contraction_triton(x, psi, self.nlon_out)
else:
out = _disco_s2_transpose_contraction_torch(x, self.psi, self.nlon_out)
out = _disco_s2_transpose_contraction_torch(x, psi, self.nlon_out)

if self.bias is not None:
out = out + self.bias.reshape(1, -1, 1, 1)
Expand Down