Skip to content

Commit

Permalink
more minor changes
Browse files Browse the repository at this point in the history
  • Loading branch information
bonevbs committed Oct 24, 2023
1 parent 5a83823 commit 791dd3f
Showing 1 changed file with 5 additions and 3 deletions.
8 changes: 5 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,12 +28,12 @@ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-->

<div align="center">
<!-- <div align="center">
<img src="https://raw.githubusercontent.com/NVIDIA/torch-harmonics/main/images/logo/logo.png" width="568">
<br>
<a href="https://github.com/NVIDIA/torch-harmonics/actions/workflows/tests.yml"><img src="https://github.com/NVIDIA/torch-harmonics/actions/workflows/tests.yml/badge.svg"></a>
<a href="https://pypi.org/project/torch_harmonics/"><img src="https://img.shields.io/pypi/v/torch_harmonics"></a>
</div>
</div> -->


<!--
Expand All @@ -44,6 +44,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

# torch-harmonics

![https://github.com/NVIDIA/torch-harmonics/actions/workflows/tests.yml](https://github.com/NVIDIA/torch-harmonics/actions/workflows/tests.yml/badge.svg)

[**Overview**](#overview) | [**Installation**](#installation) | [**More information**](#more-about-torch-harmonics) | [**Getting started**](#getting-started) | [**Contributors**](#contributors) | [**Cite us**](#cite-us) | [**References**](#references)

## Overview
Expand Down Expand Up @@ -144,7 +146,7 @@ in latitude.

### Discrete Legendre transform

<!-- The second integral, which computed the projection onto the Legendre polynomials is realized with quadrature. On the Gaussian grid, we use Gaussian quadrature in the $\cos \theta$ domain. The integral -->
The second integral, which computed the projection onto the Legendre polynomials is realized with quadrature. On the Gaussian grid, we use Gaussian quadrature in the $\cos \theta$ domain. The integral

$$
\hat{f}_{l}^{m} = \frac{1}{2} \int_{-1}^1 \hat{f}^m(\arccos x) P_l^m (x) \mathrm{d} x
Expand Down

0 comments on commit 791dd3f

Please sign in to comment.