Skip to content

Commit

Permalink
Fix fake_initialize_model_parallel for MoE models
Browse files Browse the repository at this point in the history
* Make the use of RankGenerator consistent with recent Mcore changes !1940
( NVIDIA/Megatron-LM@7f22e21)
  - use ep=1 for decoder_rank_generator, making it treat EP as part of DP
  - define a new expert_decoder_rank_generator to handle EP groups/ranks only

Signed-off-by: Guyue Huang <[email protected]>
  • Loading branch information
guyueh1 committed Nov 30, 2024
1 parent 8becd57 commit a23345b
Showing 1 changed file with 23 additions and 4 deletions.
27 changes: 23 additions & 4 deletions nemo/collections/nlp/modules/common/megatron/megatron_init.py
Original file line number Diff line number Diff line change
Expand Up @@ -349,23 +349,42 @@ def fake_initialize_model_parallel(

decoder_rank_generator = RankGenerator(
tp=tensor_model_parallel_size,
ep=expert_model_parallel_size_,
ep=1,
dp=data_parallel_size,
pp=pipeline_model_parallel_size,
cp=context_parallel_size,
order='tp-pp-dp' if use_tp_pp_dp_mapping else 'tp-cp-ep-dp-pp',
rank_offset=encoder_world_size,
)

# the default setting uses DEP (expert-parallel ranks for FFN are data-parallel ranks for Attention. This definition follows that rule.)
expert_decoder_rank_generator = RankGenerator(
tp=tensor_model_parallel_size, # the same as Attention part
ep=expert_model_parallel_size_,
dp=(decoder_world_size // (expert_model_parallel_size_ * tensor_model_parallel_size * pipeline_model_parallel_size)),
pp=pipeline_model_parallel_size,
cp=1,
order='tp-pp-dp' if use_tp_pp_dp_mapping else 'tp-cp-ep-dp-pp',
rank_offset=encoder_world_size,
)

def generator_wrapper(group_type, **kwargs):
assert decoder_rank_generator.get_ranks("pp") == expert_decoder_rank_generator.get_ranks(
"pp"
), f"Pipeline parallel groups are expected to be the same for Non-Expert and Expert part, \
but got {decoder_rank_generator.get_ranks('pp')} and {expert_decoder_rank_generator.get_ranks('pp')}"

def generator_wrapper(group_type, is_expert=False, **kwargs):
from itertools import cycle

"""The `RankGenerator` class produces a hyper-rectangle for a given set of
tensor, pipeline, data, expert, and context parallelism. If we have an encoder,
in addition to the default decoder, we essentially instantiate two `RankGenerator`
classes to construct the parallelism for each module separately, and we then have
to stitch them together for the right groups. For now, this means pp and tp-pp."""
d_ranks = decoder_rank_generator.get_ranks(group_type, **kwargs)
if is_expert:
d_ranks = expert_decoder_rank_generator.get_ranks(group_type, **kwargs)
else:
d_ranks = decoder_rank_generator.get_ranks(group_type, **kwargs)
if encoder_rank_generator is None:
for x in d_ranks:
yield x
Expand Down Expand Up @@ -446,7 +465,7 @@ def generator_wrapper(group_type, **kwargs):
# EP rank
expert_model_parallel_rank = 0
if expert_model_parallel_size_ is not None and expert_model_parallel_size_ > 1:
for ranks in generator_wrapper('ep', independent_ep=True):
for ranks in generator_wrapper('ep', is_expert=True):
if rank in ranks:
expert_model_parallel_rank = list(ranks).index(rank)

Expand Down

0 comments on commit a23345b

Please sign in to comment.