-
Notifications
You must be signed in to change notification settings - Fork 54
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add benchmarks for redu pointwise epilogue (#2079)
related to #2063 added python benchmarks for redu pointwise epilogue testing: `outer reduction + non-broadcast epilogue.` this is the only allowed epilogue in the current scheduler, can extend to include other cases if scheduler is revised.
- Loading branch information
Showing
1 changed file
with
93 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
# SPDX-FileCopyrightText: Copyright (c) 2023-present NVIDIA CORPORATION & AFFILIATES. | ||
# All rights reserved. | ||
# SPDX-License-Identifier: BSD-3-Clause | ||
|
||
import pytest | ||
from nvfuser import FusionDefinition, DataType | ||
from nvfuser.pytorch_utils import torch_dtype_to_nvfuser_dtype | ||
from .core import run_benchmark, clear_cuda_cache | ||
import torch | ||
from .global_params import generate_input_sizes, FLOAT_DTYPES, PROMOTE_DTYPES | ||
|
||
# test the influence of epilogue on the performance of reduction. | ||
# current reduction scheduler only allows epilogue to be fused with outer reduction without post reduction broadcast. | ||
# So, in this test, only outer reduction is tested. [reduction_axis] is kept to allow the extension to inner reduction. | ||
|
||
|
||
def reduction_epilogue_fusion( | ||
fd: FusionDefinition, | ||
dtype: DataType, | ||
reduction_axis: int, | ||
) -> None: | ||
T0 = fd.define_tensor( | ||
shape=[-1, -1], contiguity=[True, True], dtype=dtype, is_cpu=False | ||
) | ||
T1 = fd.define_tensor(shape=[-1], contiguity=[True], dtype=dtype, is_cpu=False) | ||
if dtype in PROMOTE_DTYPES: | ||
T0 = fd.ops.cast(T0, dtype=DataType.Float) | ||
T1 = fd.ops.cast(T1, dtype=DataType.Float) | ||
T2 = fd.ops.sum(T0, dims=[reduction_axis], keepdim=False) | ||
T3 = fd.ops.add(T2, T1) | ||
if dtype in PROMOTE_DTYPES: | ||
T3 = fd.ops.cast(T3, dtype=dtype) | ||
fd.add_output(T3) | ||
|
||
|
||
def reduction_epilogue_fwd_fn( | ||
inputs: list, | ||
): # in_tensor, epilogue_tensor, reduction_axis | ||
return torch.sum(inputs[0], dim=inputs[2]) + inputs[1] | ||
|
||
|
||
@pytest.mark.parametrize("size", generate_input_sizes(dims=2)) | ||
@pytest.mark.parametrize("dtype", FLOAT_DTYPES) | ||
@pytest.mark.parametrize("reduction_axis", [0]) | ||
def test_reduction_epilogue_nvf_benchmark( | ||
benchmark, | ||
size: tuple, | ||
dtype: torch.dtype, | ||
reduction_axis: int, | ||
disable_validation: bool, | ||
disable_benchmarking: bool, | ||
): | ||
clear_cuda_cache() | ||
x = torch.randn(size, device="cuda", dtype=dtype) | ||
epilogue = torch.randn(size[reduction_axis - 1], device="cuda", dtype=dtype) | ||
with FusionDefinition() as fd: | ||
reduction_epilogue_fusion( | ||
fd, torch_dtype_to_nvfuser_dtype(dtype), reduction_axis | ||
) | ||
|
||
if not disable_validation: | ||
eager_output = reduction_epilogue_fwd_fn( | ||
[x.to(torch.double), epilogue.to(torch.double), reduction_axis] | ||
) | ||
fd.validate([x, epilogue], [eager_output.to(dtype)]) | ||
|
||
if not disable_benchmarking: | ||
run_benchmark(benchmark, fd.execute, [x, epilogue]) | ||
|
||
|
||
@pytest.mark.parametrize("compile", [False, True], ids=["eager", "compile"]) | ||
@pytest.mark.parametrize("size", generate_input_sizes(dims=2)) | ||
@pytest.mark.parametrize("dtype", FLOAT_DTYPES) | ||
@pytest.mark.parametrize("reduction_axis", [0]) | ||
def test_reduction_epilogue_baseline_benchmark( | ||
benchmark, | ||
size: tuple, | ||
dtype: torch.dtype, | ||
reduction_axis: int, | ||
compile: bool, | ||
): | ||
clear_cuda_cache() | ||
|
||
x = torch.randn(size, device="cuda", dtype=dtype) | ||
epilogue = torch.randn(size[reduction_axis - 1], device="cuda", dtype=dtype) | ||
# Inputs and outputs are same as nvFuser, no need for manual IOByte computation | ||
run_benchmark( | ||
benchmark, | ||
torch.compile(reduction_epilogue_fwd_fn) | ||
if compile | ||
else reduction_epilogue_fwd_fn, | ||
[x, epilogue, reduction_axis], | ||
) |