Official Pytorch Implementation for Paper “MedAugment: Universal Automatic Data Augmentation Plug-in for Medical Image Analysis”
We have released the online version of MedAugment (OAA) here. The OAA allows online data augmentation as training progresses
To use MedAugment as a plug-in for your project, you should have a "baseline" folder for your custom dataset at
./datasets/classification/your_dataset_name/baseline
The organization of the "baseline" folder should follow
├── classification
├── your_dataset_name
├── baseline
├── training
| ├── class_1
| | ├── img_1.jpg # .png
| │ ├── img_2.jpg
| │ ├── ...
| ├── class_2
| | ├── img_a.jpg
| │ ├── img_b.jpg
| │ ├── ...
| ├── ...
└── validation
└── test
├── segmentation
├── your_dataset_name
├── baseline
├── training
| ├── img_1.jpg
│ ├── img_2.jpg
│ ├── ...
├── training_mask
| ├── img_1_mask.jpg # suffix
│ ├── img_2_mask.jpg
│ ├── ...
└── validation
└── validation_mask
└── test
└── test_mask
You can then move the plug-in to your project utils and run
python ./utils/medaugment.py --dataset=your_dataset_name
This will produce an augmented dataset named "medaugment" at the same level as the "baseline" folder
To run MedAugment and other augmentation methods and train the model in the paper
python ./utils/generation.py
python classification.py
You should have a "recording" folder at the root with two subfolders named "classification" and "segmentation"
If you find MedAugment useful for your research, please cite our paper as
@misc{liu2023medaugment,
title={MedAugment: Universal Automatic Data Augmentation Plug-in for Medical Image Analysis},
author={Zhaoshan Liu and Qiujie Lv and Yifan Li and Ziduo Yang and Lei Shen},
year={2023},
eprint={2306.17466},
archivePrefix={arXiv},
primaryClass={eess.IV}
}