Skip to content

Commit

Permalink
add active load model
Browse files Browse the repository at this point in the history
  • Loading branch information
rodrigomha committed Apr 2, 2024
1 parent 598b06f commit a06d2db
Showing 1 changed file with 22 additions and 1 deletion.
23 changes: 22 additions & 1 deletion docs/src/component_models/loads.md
Original file line number Diff line number Diff line change
Expand Up @@ -160,4 +160,25 @@ Finally, the withdrawed current from the bus is:
I_r = \left(\frac{S_\text{motor}}{S_\text{base}}\right) (i_{ds} - v_{qs} B_{sh}) \\
I_i = \left(\frac{S_\text{motor}}{S_\text{base}}\right) (i_{qs} + v_{ds} B_{sh})
\end{align*}
```
```

### Active Constant Power Load Model

The following 12-state model Active Load model that measures the AC side using a Phase-Lock-Loop (PLL) and regulates a DC voltage to supply a resistor $r_L$. This model induces a CPL-like behavior as it tries to maintain a fixed DC voltage to supply ``P = v_\text{DC}^2 / r_L`` (based on [the following reference](https://www.sciencedirect.com/science/article/pii/S0142061516000740)).

```math
The complete model is given by:
\begin{align}
\dot{\theta} &= \Omega_b (\omega_\text{pll} - \omega_s) \tag{4a} \\
\dot{\epsilon} &= v_\text{o}^\q \tag{4b}\\
\omega_\text{pll} &= \omega^\star + k^p_\text{pll} v_\text{o}^\q + k_\text{pll}^i \epsilon \tag{4c}\\
\dot{\zeta} &= v_\text{DC}^\star - v_\text{DC} \tag{4d} \\
i_\text{cv}^{\d,\star} &= k_\text{DC}^p ( v_\text{DC}^\star - v_\text{DC}) + k_\text{DC}^i \zeta \tag{4e} \\
\frac{c_\text{DC}}{\Omega_b} \dot{v}_\text{DC} &= \frac{p_\text{cv}}{v_\text{DC}} - \frac{v_\text{DC}}{r_L} \tag{4f} \\
\dot{\gamma}_\d &= i_\text{cv}^\d - i_\text{cv}^{\d,\star} \tag{4g}\\
\dot{\gamma}_\q &= i_\text{cv}^\q - i_\text{cv}^{\q,\star} \tag{4h} \\
v_\text{cv}^{\d,\star} &= k_\text{pc}( i_\text{cv}^\d - i_\text{cv}^{\d,\star}) + k_\text{ic} \gamma_\d + \omega_\text{pll} l_f i_\text{cv}^\q \tag{4i}\\
v_\text{cv}^{\q,\star} &= k_\text{pc}( i_\text{cv}^\q - i_\text{cv}^{\q,\star}) + k_\text{ic} \gamma_\q - \omega_\text{pll} l_f i_\text{cv}^\d \tag{4j}
\end{align}
```
Equations (4a)--(4c) describes the PLL dynamics to lock the active load to the grid. Equations (4d)-(4e) describes the DC Voltage Controller to steer the DC voltage to ``v_\text{DC}^\star``, while equation (4f) describes the DC voltage dynamics at the capacitor assuming an ideal converter. Finally, equations (4g)--(4j) describes the dynamics of the AC Current Controller. Additionally six states are defined for the LCL filter in a similar fashion of GFM inverters.

0 comments on commit a06d2db

Please sign in to comment.