-
Notifications
You must be signed in to change notification settings - Fork 50
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add SegmentationVisualizationCallback for visualizing segmentation pr…
…edictions during validation
- Loading branch information
valhassan
committed
Oct 3, 2024
1 parent
8022ad2
commit a2e08b1
Showing
1 changed file
with
61 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from typing import Any | ||
from lightning import LightningModule, Trainer | ||
from lightning.pytorch.loggers import MLFlowLogger | ||
from lightning.pytorch.callbacks import Callback | ||
|
||
class SegmentationVisualizationCallback(Callback): | ||
|
||
def __init__(self, | ||
max_samples: int = 5): | ||
self.max_samples = max_samples | ||
self.samples_logged = 0 | ||
|
||
def on_validation_epoch_start(self, trainer, pl_module) -> None: | ||
self.samples_logged = 0 | ||
|
||
def on_validation_batch_end(self, | ||
trainer, | ||
pl_module, | ||
outputs, | ||
batch, | ||
batch_idx, | ||
dataloader_idx=0): | ||
|
||
if self.samples_logged < self.max_samples: | ||
|
||
image_batch = batch["image"] | ||
label_batch = batch["label"] | ||
batch_size = image_batch.shape[0] | ||
N = min(self.max_samples - self.samples_logged, batch_size) | ||
fig, axes = plt.subplots(batch_size, 3, figsize=(15, 5 * batch_size)) | ||
axes = axes.reshape(N, 3) if N > 1 else axes.reshape(1, 3) | ||
for i in range(N): | ||
image = image_batch[i] | ||
label = label_batch[i] | ||
output = outputs[i] | ||
image = (image.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) | ||
label = label.squeeze(0).long().cpu().numpy() | ||
output = output.cpu().numpy() | ||
ax_image, ax_label, ax_output = axes[i] | ||
|
||
ax_image.imshow(image) | ||
ax_image.set_title('Image') | ||
ax_label.imshow(label) | ||
ax_label.set_title('Label') | ||
ax_output.imshow(output) | ||
ax_output.set_title('Output') | ||
for ax in [ax_image, ax_label, ax_output]: | ||
ax.axis("off") | ||
|
||
plt.tight_layout() | ||
artifact_file = f"val/predictions_{self.samples_logged}.png" | ||
trainer.logger.experiment.log_figure(figure=fig, | ||
artifact_file = artifact_file, | ||
run_id=trainer.logger.run_id) | ||
plt.close(fig) | ||
self.samples_logged += N | ||
|
||
|