Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allow evolution and convolution with different ekos for a single grid #181

Merged
merged 69 commits into from
Aug 21, 2024

Conversation

giacomomagni
Copy link
Contributor

Adress #180.

@giacomomagni giacomomagni added the enhancement New feature or request label Jun 3, 2024
@felixhekhorn
Copy link
Contributor

Do you want to make this a draft or shall I comment right away?

@giacomomagni
Copy link
Contributor Author

giacomomagni commented Jun 3, 2024

Please feel free to comment, but note that this are dirty changes and ugly solutions, so be patient 😬

src/pineko/evolve.py Outdated Show resolved Hide resolved
src/pineko/evolve.py Outdated Show resolved Hide resolved
src/pineko/evolve.py Outdated Show resolved Hide resolved
src/pineko/evolve.py Outdated Show resolved Hide resolved
Copy link
Member

@Radonirinaunimi Radonirinaunimi left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

As soon as this is ready and good to go (and perhaps modulo some cosmetic changes), we can test it with NNPDF/pineappl#289 - which should already give exactly what we want.

@Radonirinaunimi
Copy link
Member

Radonirinaunimi commented Jun 3, 2024

For the benchmarks, we don't necessarily need a new pineappl release. For testing purposes and until NNPDF/pineappl#289 is merged we can do the following in pyproject.toml:

pineappl = { git = "https://github.com/NNPDF/pineappl.git", branch = "extend_eko_convolution", subdirectory = "pineappl_py" }

Copy link
Member

@Radonirinaunimi Radonirinaunimi left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The benchmarks still fail when I tried locally because of some breaking changes that have been introduced recently (?). In particular regarding the renaming of lumi->channel: NNPDF/pineappl@aef0982

cc @cschwan

src/pineko/evolve.py Outdated Show resolved Hide resolved
@NNPDF NNPDF deleted a comment from giacomomagni Jun 3, 2024
src/pineko/evolve.py Outdated Show resolved Hide resolved
@scarlehoff
Copy link
Member

The inversion method is also different.

I'm running the ekos now with this branch so that I can give you the objets that reproduce the bug on my side.

@scarlehoff
Copy link
Member

scarlehoff commented Aug 15, 2024

I can reproduce the error with a new environment:

pip install .[nnpdf]
pineko fonll tcards 41000000
pineko fonll ekos 41000000 HERA_NC_318GEV_EM-SIGMARED --overwrite
pineko fonll fks 41000000 HERA_NC_318GEV_EM-SIGMARED --overwrite

ekos, fktables and other artifacts can be found here: https://cernbox.cern.ch/s/RAADfwb3qk6HjyK (there's a few empty folders because there are inheritances and it doesn't work well when I copy the links from afs to eos -which is the filesystem of lxplus from which I can create public links-)

env

Package Version


absl-py 2.1.0
alabaster 0.7.16
astunparse 1.6.3
babel 2.16.0
blessings 1.7
certifi 2024.7.4
charset-normalizer 3.3.2
click 8.1.7
cloudpickle 3.0.0
commonmark 0.9.1
contourpy 1.2.1
cycler 0.12.1
dask 2024.8.0
distributed 2024.8.0
docutils 0.21.2
eko 0.14.6
flatbuffers 24.3.25
fonttools 4.53.1
fsspec 2024.6.1
future 1.0.0
gast 0.6.0
google-pasta 0.2.0
grpcio 1.65.4
h5py 3.11.0
hyperopt 0.2.7
idna 3.7
imagesize 1.4.1
importlib_metadata 8.2.0
importlib_resources 6.4.2
Jinja2 3.1.4
keras 3.5.0
kiwisolver 1.4.5
latexcodec 3.0.0
lhapdf-management 0.5
libclang 18.1.1
llvmlite 0.42.0
locket 1.0.0
lz4 4.3.3
Markdown 3.6
MarkupSafe 2.1.5
matplotlib 3.7.5
ml-dtypes 0.4.0
msgpack 1.0.8
namex 0.0.8
networkx 3.2.1
nnpdf 4.0.9.post1280.dev0+958470844
numba 0.59.1
numpy 1.26.4
opt-einsum 3.3.0
optree 0.12.1
packaging 24.1
pandas 2.2.2
partd 1.4.2
pillow 10.4.0
pineappl 0.8.2
pineko 0.4.5.post178+725db3d
pip 21.2.3
prompt_toolkit 3.0.47
protobuf 4.25.4
psutil 6.0.0
py4j 0.10.9.7
pybtex 0.24.0
pybtex-docutils 1.0.3
Pygments 2.18.0
pymongo 3.13.0
pyparsing 3.1.2
python-dateutil 2.9.0.post0
pytz 2024.1
PyYAML 6.0.2
reportengine 0.30.dev0
requests 2.32.3
rich 12.6.0
ruamel.yaml 0.17.40
ruamel.yaml.clib 0.2.8
scipy 1.13.1
seaborn 0.13.2
setuptools 53.0.0
six 1.16.0
snowballstemmer 2.2.0
sortedcontainers 2.4.0
Sphinx 7.4.7
sphinxcontrib-applehelp 2.0.0
sphinxcontrib-bibtex 2.6.2
sphinxcontrib-devhelp 2.0.0
sphinxcontrib-htmlhelp 2.1.0
sphinxcontrib-jsmath 1.0.1
sphinxcontrib-qthelp 2.0.0
sphinxcontrib-serializinghtml 2.0.0
tblib 3.0.0
tensorboard 2.17.1
tensorboard-data-server 0.7.2
tensorflow 2.17.0
tensorflow-io-gcs-filesystem 0.37.1
termcolor 2.4.0
tomli 2.0.1
toolz 0.12.1
tornado 6.4.1
tqdm 4.66.5
typing_extensions 4.12.2
tzdata 2024.1
urllib3 2.2.2
validobj 1.2
wcwidth 0.2.13
Werkzeug 3.0.3
wheel 0.44.0
wrapt 1.16.0
zict 3.0.0
zipp 3.20.0

@giacomomagni
Copy link
Contributor Author

giacomomagni commented Aug 15, 2024

@scarlehoff, so now with the template card matching exactly your settings, eko from this branch,
new or old grid and eko and fktable from this branch I do not find the bug.

I'll now inspect your ekos...

difference old grid, new eko
LHAPDF 6.4.0 loading /project/theorie/gmagni/miniconda3/envs/nnpdf/share/LHAPDF/NNPDF40_nnlo_as_01180/NNPDF40_nnlo_as_01180_0000.dat
NNPDF40_nnlo_as_01180 PDF set, member #0, version 1; LHAPDF ID = 331100
     allow_different_ekos      main      abs_diff      rel_diff
0                1.431205  1.431205 -2.172040e-12 -1.517631e-10
1                1.393423  1.393423 -2.899903e-13 -2.081136e-11
2                1.366727  1.366727 -2.884359e-13 -2.110413e-11
3                1.288318  1.288318 -2.535749e-13 -1.968264e-11
4                1.363930  1.363930 -3.503864e-13 -2.568946e-11
5                1.324558  1.324558 -2.498002e-13 -1.885913e-11
6                1.180105  1.180105  1.484812e-12  1.258204e-10
7                1.327288  1.327288 -2.577938e-13 -1.942260e-11
8                1.210373  1.210373  1.405764e-12  1.161431e-10
9                1.058666  1.058666 -1.690426e-12 -1.596751e-10
10               0.904670  0.904670  6.575851e-13  7.268785e-11
11               0.765871  0.765871 -1.183387e-12 -1.545151e-10
12               1.272911  1.272911  1.403988e-12  1.102974e-10
13               1.231978  1.231978  1.353362e-12  1.098527e-10
14               1.093105  1.093105 -1.655565e-12 -1.514552e-10
15               0.934928  0.934928  6.024070e-13  6.443354e-11
16               0.788414  0.788414 -1.217026e-12 -1.543639e-10
17               0.677735  0.677735 -1.052158e-12 -1.552463e-10
18               0.576294  0.576294 -6.877832e-13 -1.193459e-10
19               0.496117  0.496117 -9.744427e-13 -1.964141e-10
20               0.427571  0.427571 -1.120826e-12 -2.621376e-10
21               0.368362  0.368362 -1.092904e-12 -2.966924e-10
22               0.325425  0.325425 -5.396239e-13 -1.658214e-10
23               1.220661  1.220661  1.015632e-12  8.320346e-11
24               1.112946  1.112946 -1.630696e-12 -1.465206e-10
25               0.956404  0.956404  5.553336e-13  5.806477e-11
26               0.805117  0.805117 -1.229683e-12 -1.527335e-10
27               0.689732  0.689732 -1.058820e-12 -1.535118e-10
28               0.583865  0.583865 -7.083223e-13 -1.213162e-10
29               0.500366  0.500366 -9.854340e-13 -1.969428e-10
30               0.429142  0.429142 -1.066980e-12 -2.486311e-10
31               0.367727  0.367727 -1.088407e-12 -2.959822e-10
32               0.323516  0.323516 -5.219158e-13 -1.613261e-10
33               0.264223  0.264223  1.676437e-14  6.344770e-12
34               0.144370  0.144370 -4.829470e-15 -3.345213e-12
35               1.178929  1.178929 -8.046896e-13 -6.825598e-11
36               1.121619  1.121619 -1.588063e-12 -1.415866e-10
37               0.971998  0.971998  3.562706e-13  3.665342e-11
38               0.818175  0.818175 -1.401435e-12 -1.712879e-10
39               0.699260  0.699260 -1.051159e-12 -1.503245e-10
40               0.589902  0.589902 -7.408518e-13 -1.255889e-10
41               0.503755  0.503755 -9.880985e-13 -1.961466e-10
42               0.430396  0.430396 -1.056433e-12 -2.454561e-10
43               0.367228  0.367228 -1.083467e-12 -2.950391e-10
44               0.322009  0.322009 -5.074829e-13 -1.575989e-10
45               0.261942  0.261942  1.654232e-14  6.315251e-12
46               0.141963  0.141963 -4.884981e-15 -3.441019e-12
47               1.101881  1.101881 -1.137535e-12 -1.032357e-10
48               0.990724  0.990724  3.154144e-13  3.183675e-11
49               0.837385  0.837385 -1.425304e-12 -1.702090e-10
50               0.713844  0.713844 -1.064926e-12 -1.491820e-10
51               0.599273  0.599273 -7.664980e-13 -1.279045e-10
52               0.509059  0.509059 -9.959811e-13 -1.956513e-10
53               0.432404  0.432404 -1.042333e-12 -2.410553e-10
54               0.366535  0.366535 -1.071809e-12 -2.924165e-10
55               0.319768  0.319768 -4.864442e-13 -1.521239e-10
56               0.258520  0.258520  1.565414e-14  6.055294e-12
57               0.138364  0.138364 -4.551914e-15 -3.289807e-12
58               1.044191  1.044191  7.549517e-13  7.230012e-11
59               0.996820  0.996820  2.843281e-13  2.852350e-11
60               0.850581  0.850581 -1.427858e-12 -1.678685e-10
61               0.724812  0.724812 -1.074030e-12 -1.481805e-10
62               0.606550  0.606550 -7.885914e-13 -1.300126e-10
63               0.513265  0.513265 -9.903189e-13 -1.929451e-10
64               0.434086  0.434086 -1.027289e-12 -2.366559e-10
65               0.366146  0.366146 -1.065426e-12 -2.909841e-10
66               0.318195  0.318195 -4.711787e-13 -1.480784e-10
67               0.256044  0.256044  1.548761e-14  6.048797e-12
68               0.135745  0.135745 -4.468648e-15 -3.291945e-12
69               0.020857  0.020857 -1.249001e-16 -5.988467e-13
70               0.975756  0.975756 -2.864375e-14 -2.935546e-12
71               0.862854  0.862854 -1.438849e-12 -1.667546e-10
72               0.737335  0.737335 -1.087797e-12 -1.475308e-10
73               0.615373  0.615373 -8.137935e-13 -1.322439e-10
74               0.518554  0.518554 -1.000644e-12 -1.929683e-10
75               0.436385  0.436385 -1.014966e-12 -2.325847e-10
76               0.365980  0.365980 -1.058098e-12 -2.891137e-10
77               0.316622  0.316622 -4.547474e-13 -1.436247e-10
78               0.253392  0.253392  1.515454e-14  5.980672e-12
79               0.132873  0.132873 -4.357625e-15 -3.279547e-12
80               0.921142  0.921142 -1.112666e-12 -1.207920e-10
81               0.868284  0.868284 -1.446288e-12 -1.665685e-10
82               0.746887  0.746887 -1.074030e-12 -1.438008e-10
83               0.622828  0.622828 -8.383294e-13 -1.346005e-10
84               0.523260  0.523260 -1.011191e-12 -1.932484e-10
85               0.438647  0.438647 -1.005918e-12 -2.293230e-10
86               0.366204  0.366204 -1.063372e-12 -2.903770e-10
87               0.315682  0.315682 -4.428125e-13 -1.402715e-10
88               0.251551  0.251551  1.504352e-14  5.980317e-12
89               0.130777  0.130777 -4.052314e-15 -3.098645e-12
90               0.019460  0.019460  4.163336e-17  2.139435e-13
91               0.866775  0.866775 -1.435296e-12 -1.655904e-10
92               0.756410  0.756410 -1.079692e-12 -1.427389e-10
93               0.631614  0.631614 -8.619772e-13 -1.364722e-10
94               0.529165  0.529165 -1.020184e-12 -1.927914e-10
95               0.441767  0.441767 -1.012579e-12 -2.292111e-10
96               0.366969  0.366969 -1.052602e-12 -2.868367e-10
97               0.315101  0.315101 -4.336531e-13 -1.376234e-10
98               0.249908  0.249908  1.521006e-14  6.086269e-12
99               0.128726  0.128726 -3.969047e-15 -3.083329e-12
100              0.845044  0.845044 -1.468492e-12 -1.737769e-10
101              0.762949  0.762949 -1.085687e-12 -1.423014e-10
102              0.639632  0.639632 -8.799628e-13 -1.375734e-10
103              0.534953  0.534953 -1.030509e-12 -1.926355e-10
104              0.445090  0.445090 -1.038114e-12 -2.332369e-10
105              0.368163  0.368163 -1.004363e-12 -2.728036e-10
106              0.315075  0.315075 -4.232725e-13 -1.343403e-10
107              0.248901  0.248901  1.443290e-14  5.798660e-12
108              0.127231  0.127231 -3.802514e-15 -2.988663e-12
109              0.767864  0.767864 -1.076805e-12 -1.402339e-10
110              0.650886  0.650886 -9.114931e-13 -1.400389e-10
111              0.543829  0.543829 -1.041056e-12 -1.914308e-10
112              0.450573  0.450573 -1.038003e-12 -2.303742e-10
113              0.370627  0.370627 -1.000644e-12 -2.699865e-10
114              0.315807  0.315807 -4.120038e-13 -1.304606e-10
115              0.248214  0.248214  1.451617e-14  5.848248e-12
116              0.125669  0.125669 -3.719247e-15 -2.959562e-12
117              0.017926  0.017926  1.942890e-16  1.083868e-12
118              0.750426  0.750426 -9.695578e-13 -1.292010e-10
119              0.668063  0.668063 -9.264811e-13 -1.386817e-10
120              0.559651  0.559651 -1.123324e-12 -2.007187e-10
121              0.461124  0.461124 -1.018630e-12 -2.209013e-10
122              0.376197  0.376197 -1.008749e-12 -2.681434e-10
123              0.318522  0.318522 -4.027334e-13 -1.264380e-10
124              0.248545  0.248545  1.457168e-14  5.862791e-12
125              0.124198  0.124198 -3.691492e-15 -2.972263e-12
126              0.017365  0.017365  2.636780e-16  1.518480e-12
127              0.689771  0.689771 -9.804380e-13 -1.421396e-10
128              0.593159  0.593159 -1.222245e-12 -2.060568e-10
129              0.486219  0.486219 -1.062095e-12 -2.184397e-10
130              0.391073  0.391073 -1.038503e-12 -2.655518e-10
131              0.327452  0.327452 -3.812506e-13 -1.164293e-10
132              0.252404  0.252404  1.354472e-14  5.366282e-12
133              0.123518  0.123518 -3.691492e-15 -2.988627e-12
134              0.016756  0.016756  3.157197e-16  1.884165e-12
135              0.631652  0.631652 -1.308065e-12 -2.070862e-10
136              0.546746  0.546746 -1.218914e-12 -2.229395e-10
137              0.430899  0.430899 -1.129152e-12 -2.620457e-10
138              0.353535  0.353535 -3.855805e-13 -1.090642e-10
139              0.266634  0.266634  1.415534e-14  5.308896e-12
140              0.126101  0.126101 -3.608225e-15 -2.861371e-12
141              0.016365  0.016365  3.920475e-16  2.395654e-12
142              0.603286  0.603286 -1.217693e-12 -2.018434e-10
143              0.501115  0.501115 -1.275757e-12 -2.545838e-10
144              0.402437  0.402437 -4.086731e-13 -1.015495e-10
145              0.295010  0.295010  1.498801e-14  5.080507e-12
146              0.133527  0.133527 -3.580469e-15 -2.681452e-12
147              0.016462  0.016462  4.302114e-16  2.613377e-12
148              0.577670  0.577670 -1.474487e-12 -2.552473e-10
149              0.470997  0.470997 -4.642953e-13 -9.857704e-11
150              0.337669  0.337669  1.831868e-14  5.425043e-12
151              0.145597  0.145597 -3.413936e-15 -2.344789e-12
152              0.016974  0.016974  4.614364e-16  2.718542e-12
153              0.415504  0.415504  2.331468e-14  5.611180e-12
154              0.171563  0.171563 -3.552714e-15 -2.070798e-12
155              0.018347  0.018347  5.932754e-16  3.233585e-12
156              0.200463  0.200463 -3.330669e-15 -1.661490e-12
157              0.020233  0.020233  6.036838e-16  2.983643e-12
158              0.023523  0.023523  7.042977e-16  2.994122e-12
Thanks for using LHAPDF 6.4.0. Please make sure to cite the paper:
  Eur.Phys.J. C75 (2015) 3, 132  (http://arxiv.org/abs/1412.7420)

@scarlehoff
Copy link
Member

scarlehoff commented Aug 15, 2024

Are we using the same version of eko, and pineappl? (and pineko, I'm using this commit: 725db3d) ?

Before we continue, if you do

pineappl convolute HERA_NC_318GEV_EM_SIGMARED.pineappl.lz4 NNPDF40_nnlo_as_01180

from fktables/41000000 in the last folder that I linked, do you get the same results I do?

Results
 b      Q2            x                y             integ
      [GeV^2]        []               []               []
---+-----+-----+------+------+---------+---------+------------
  0    60    60 0.0008 0.0008   0.74111   0.74111 4.7527486e-1
  1    90    90 0.0013 0.0013    0.6841    0.6841 4.6824195e-1
  2    90    90 0.0015 0.0015   0.59289   0.59289 4.7514910e-1
  3    90    90  0.002  0.002   0.44466   0.44466 4.8092986e-1
  4   120   120 0.0016 0.0016   0.74111   0.74111 4.5819655e-1
  5   120   120  0.002  0.002   0.59289   0.59289 4.7249652e-1
  6   120   120 0.0032 0.0032   0.37055   0.37055 4.8040902e-1
  7   150   150  0.002  0.002   0.74111   0.74111 4.5715597e-1
  8   150   150 0.0032 0.0032   0.46319   0.46319 4.7957520e-1
  9   150   150  0.005  0.005   0.29644   0.29644 4.8026955e-1
 10   150   150  0.008  0.008   0.18528   0.18528 4.7421085e-1
 11   150   150  0.013  0.013   0.11402   0.11402 4.6529739e-1
 12   200   200 0.0026 0.0026   0.76011   0.76011 4.5561647e-1
 13   200   200 0.0032 0.0032   0.61759   0.61759 4.7171272e-1
 14   200   200  0.005  0.005   0.39526   0.39526 4.8309162e-1
 15   200   200  0.008  0.008   0.24704   0.24704 4.8025731e-1
 16   200   200  0.013  0.013   0.15202   0.15202 4.7171968e-1
 17   200   200   0.02   0.02  0.098814  0.098814 4.6076735e-1
 18   200   200  0.032  0.032  0.061759  0.061759 4.4361258e-1
 19   200   200   0.05   0.05  0.039526  0.039526 4.2104216e-1
 20   200   200   0.08   0.08  0.024704  0.024704 3.9167733e-1
 21   200   200   0.13   0.13  0.015202  0.015202 3.5461824e-1
 22   200   200   0.18   0.18  0.010979  0.010979 3.1924756e-1
 23   250   250 0.0033 0.0033   0.74859   0.74859 4.5951508e-1
 24   250   250  0.005  0.005   0.49407   0.49407 4.8239125e-1
 25   250   250  0.008  0.008   0.30879   0.30879 4.8419464e-1
 26   250   250  0.013  0.013   0.19003   0.19003 4.7648900e-1
 27   250   250   0.02   0.02   0.12352   0.12352 4.6509128e-1
 28   250   250  0.032  0.032  0.077199  0.077199 4.4690594e-1
 29   250   250   0.05   0.05  0.049407  0.049407 4.2311428e-1
 30   250   250   0.08   0.08  0.030879  0.030879 3.9234228e-1
 31   250   250   0.13   0.13  0.019003  0.019003 3.5370930e-1
 32   250   250   0.18   0.18  0.013724  0.013724 3.1724851e-1
 33   250   250   0.25   0.25 0.0098814 0.0098814 2.6197443e-1
 34   250   250    0.4    0.4 0.0061759 0.0061759 1.4416114e-1
 35   300   300 0.0039 0.0039   0.76011   0.76011 4.6072801e-1
 36   300   300  0.005  0.005   0.59289   0.59289 4.7852282e-1
 37   300   300  0.008  0.008   0.37055   0.37055 4.8658670e-1
 38   300   300  0.013  0.013   0.22803   0.22803 4.8020682e-1
 39   300   300   0.02   0.02   0.14822   0.14822 4.6857936e-1
 40   300   300  0.032  0.032  0.092638  0.092638 4.4958523e-1
 41   300   300   0.05   0.05  0.059289  0.059289 4.2480528e-1
 42   300   300   0.08   0.08  0.037055  0.037055 3.9289651e-1
 43   300   300   0.13   0.13  0.022803  0.022803 3.5300185e-1
 44   300   300   0.18   0.18  0.016469  0.016469 3.1567412e-1
 45   300   300   0.25   0.25  0.011858  0.011858 2.5968205e-1
 46   300   300    0.4    0.4 0.0074111 0.0074111 1.4174774e-1
 47   400   400 0.0053 0.0053   0.74577   0.74577 4.6801159e-1
 48   400   400  0.008  0.008   0.49407   0.49407 4.8768018e-1
 49   400   400  0.013  0.013   0.30404   0.30404 4.8559196e-1
 50   400   400   0.02   0.02   0.19763   0.19763 4.7405536e-1
 51   400   400  0.032  0.032   0.12352   0.12352 4.5388719e-1
 52   400   400   0.05   0.05  0.079051  0.079051 4.2755971e-1
 53   400   400   0.08   0.08  0.049407  0.049407 3.9386462e-1
 54   400   400   0.13   0.13  0.030404  0.030404 3.5200404e-1
 55   400   400   0.18   0.18  0.021959  0.021959 3.1333711e-1
 56   400   400   0.25   0.25   0.01581   0.01581 2.5624472e-1
 57   400   400    0.4    0.4 0.0098814 0.0098814 1.3814025e-1
 58   500   500 0.0066 0.0066   0.74859   0.74859 4.7257487e-1
 59   500   500  0.008  0.008   0.61759   0.61759 4.8449758e-1
 60   500   500  0.013  0.013   0.38005   0.38005 4.8910351e-1
 61   500   500   0.02   0.02   0.24704   0.24704 4.7834054e-1
 62   500   500  0.032  0.032    0.1544    0.1544 4.5740849e-1
 63   500   500   0.05   0.05  0.098814  0.098814 4.2988193e-1
 64   500   500   0.08   0.08  0.061759  0.061759 3.9478461e-1
 65   500   500   0.13   0.13  0.038005  0.038005 3.5139504e-1
 66   500   500   0.18   0.18  0.027448  0.027448 3.1169630e-1
 67   500   500   0.25   0.25  0.019763  0.019763 2.5375980e-1
 68   500   500    0.4    0.4  0.012352  0.012352 1.3551616e-1
 69   500   500   0.65   0.65 0.0076011 0.0076011 2.1319376e-2
 70   650   650 0.0085 0.0085   0.75564   0.75564 4.7787306e-1
 71   650   650  0.013  0.013   0.49407   0.49407 4.9180459e-1
 72   650   650   0.02   0.02   0.32115   0.32115 4.8351072e-1
 73   650   650  0.032  0.032   0.20072   0.20072 4.6199077e-1
 74   650   650   0.05   0.05   0.12846   0.12846 4.3303832e-1
 75   650   650   0.08   0.08  0.080287  0.080287 3.9622627e-1
 76   650   650   0.13   0.13  0.049407  0.049407 3.5098491e-1
 77   650   650   0.18   0.18  0.035683  0.035683 3.1004862e-1
 78   650   650   0.25   0.25  0.025692  0.025692 2.5109771e-1
 79   650   650    0.4    0.4  0.016057  0.016057 1.3263995e-1
 80   800   800 0.0105 0.0105   0.75287   0.75287 4.8321766e-1
 81   800   800  0.013  0.013   0.60809   0.60809 4.9187717e-1
 82   800   800   0.02   0.02   0.39526   0.39526 4.8774829e-1
 83   800   800  0.032  0.032   0.24704   0.24704 4.6620723e-1
 84   800   800   0.05   0.05    0.1581    0.1581 4.3609737e-1
 85   800   800   0.08   0.08  0.098814  0.098814 3.9782433e-1
 86   800   800   0.13   0.13  0.060809  0.060809 3.5102077e-1
 87   800   800   0.18   0.18  0.043917  0.043917 3.0905240e-1
 88   800   800   0.25   0.25  0.031621  0.031621 2.4924907e-1
 89   800   800    0.4    0.4  0.019763  0.019763 1.3054175e-1
 90   800   800   0.65   0.65  0.012162  0.012162 1.9786938e-2
 91  1000  1000  0.013  0.013   0.76011   0.76011 4.8810734e-1
 92  1000  1000   0.02   0.02   0.49407   0.49407 4.9232608e-1
 93  1000  1000  0.032  0.032   0.30879   0.30879 4.7163577e-1
 94  1000  1000   0.05   0.05   0.19763   0.19763 4.4025369e-1
 95  1000  1000   0.08   0.08   0.12352   0.12352 4.0023625e-1
 96  1000  1000   0.13   0.13  0.076011  0.076011 3.5158493e-1
 97  1000  1000   0.18   0.18  0.054897  0.054897 3.0841006e-1
 98  1000  1000   0.25   0.25  0.039526  0.039526 2.4759802e-1
 99  1000  1000    0.4    0.4  0.024704  0.024704 1.2848894e-1
100  1200  1200  0.014  0.014   0.84698   0.84698 4.8653947e-1
101  1200  1200   0.02   0.02   0.59289   0.59289 4.9575061e-1
102  1200  1200  0.032  0.032   0.37055   0.37055 4.7703299e-1
103  1200  1200   0.05   0.05   0.23715   0.23715 4.4461908e-1
104  1200  1200   0.08   0.08   0.14822   0.14822 4.0297511e-1
105  1200  1200   0.13   0.13  0.091213  0.091213 3.5261170e-1
106  1200  1200   0.18   0.18  0.065876  0.065876 3.0833222e-1
107  1200  1200   0.25   0.25  0.047431  0.047431 2.4658343e-1
108  1200  1200    0.4    0.4  0.029644  0.029644 1.2699291e-1
109  1500  1500   0.02   0.02   0.74111   0.74111 4.9856822e-1
110  1500  1500  0.032  0.032   0.46319   0.46319 4.8527234e-1
111  1500  1500   0.05   0.05   0.29644   0.29644 4.5172879e-1
112  1500  1500   0.08   0.08   0.18528   0.18528 4.0771364e-1
113  1500  1500   0.13   0.13   0.11402   0.11402 3.5485802e-1
114  1500  1500   0.18   0.18  0.082345  0.082345 3.0899514e-1
115  1500  1500   0.25   0.25  0.059289  0.059289 2.4588520e-1
116  1500  1500    0.4    0.4  0.037055  0.037055 1.2542911e-1
117  1500  1500   0.65   0.65  0.022803  0.022803 1.8125212e-2
118  2000  2000 0.0219 0.0219   0.90241   0.90241 5.0184841e-1
119  2000  2000  0.032  0.032   0.61759   0.61759 4.9909397e-1
120  2000  2000   0.05   0.05   0.39526   0.39526 4.6517713e-1
121  2000  2000   0.08   0.08   0.24704   0.24704 4.1720873e-1
122  2000  2000   0.13   0.13   0.15202   0.15202 3.6010628e-1
123  2000  2000   0.18   0.18   0.10979   0.10979 3.1160287e-1
124  2000  2000   0.25   0.25  0.079051  0.079051 2.4619450e-1
125  2000  2000    0.4    0.4  0.049407  0.049407 1.2395625e-1
126  2000  2000   0.65   0.65  0.030404  0.030404 1.7522694e-2
127  3000  3000  0.032  0.032   0.92638   0.92638 5.1879694e-1
128  3000  3000   0.05   0.05   0.59289   0.59289 4.9548677e-1
129  3000  3000   0.08   0.08   0.37055   0.37055 4.4065182e-1
130  3000  3000   0.13   0.13   0.22803   0.22803 3.7444715e-1
131  3000  3000   0.18   0.18   0.16469   0.16469 3.2034299e-1
132  3000  3000   0.25   0.25   0.11858   0.11858 2.5000862e-1
133  3000  3000    0.4    0.4  0.074111  0.074111 1.2327234e-1
134  3000  3000   0.65   0.65  0.045607  0.045607 1.6869558e-2
135  5000  5000 0.0547 0.0547   0.90324   0.90324 5.4276710e-1
136  5000  5000   0.08   0.08   0.61759   0.61759 4.9864859e-1
137  5000  5000   0.13   0.13   0.38005   0.38005 4.1332462e-1
138  5000  5000   0.18   0.18   0.27448   0.27448 3.4605955e-1
139  5000  5000   0.25   0.25   0.19763   0.19763 2.6413680e-1
140  5000  5000    0.4    0.4   0.12352   0.12352 1.2584652e-1
141  5000  5000   0.65   0.65  0.076011  0.076011 1.6438562e-2
142  8000  8000 0.0875 0.0875   0.90344   0.90344 5.6046209e-1
143  8000  8000   0.13   0.13   0.60809   0.60809 4.8243214e-1
144  8000  8000   0.18   0.18   0.43917   0.43917 3.9449448e-1
145  8000  8000   0.25   0.25   0.31621   0.31621 2.9237090e-1
146  8000  8000    0.4    0.4   0.19763   0.19763 1.3325934e-1
147  8000  8000   0.65   0.65   0.12162   0.12162 1.6511126e-2
148 12000 12000   0.13   0.13   0.91213   0.91213 5.5805927e-1
149 12000 12000   0.18   0.18   0.65876   0.65876 4.6260513e-1
150 12000 12000   0.25   0.25   0.47431   0.47431 3.3488338e-1
151 12000 12000    0.4    0.4   0.29644   0.29644 1.4531489e-1
152 12000 12000   0.65   0.65   0.18243   0.18243 1.7008139e-2
153 20000 20000   0.25   0.25   0.79051   0.79051 4.1254118e-1
154 20000 20000    0.4    0.4   0.49407   0.49407 1.7126302e-1
155 20000 20000   0.65   0.65   0.30404   0.30404 1.8368832e-2
156 30000 30000    0.4    0.4   0.74111   0.74111 2.0015181e-1
157 30000 30000   0.65   0.65   0.45607   0.45607 2.0247655e-2
158 50000 50000   0.65   0.65   0.76011   0.76011 2.3531551e-2

Just to discard that it is a problem of the metadata of the final fktable.

@giacomomagni
Copy link
Contributor Author

So the bug was indeed when using the old grids and generating opcards.
Pineko was checking if "polarized" was True, but the thing was "False".

@scarlehoff
Copy link
Member

Thanks @giacomomagni, I can confirm this fixes the issue for me!

@felixhekhorn
Copy link
Contributor

thanks @giacomomagni ! good job - and indeed your conjecture was correct.

Can this then be merged?

@scarlehoff
Copy link
Member

I'd like to go through it one more time

Copy link
Member

@scarlehoff scarlehoff left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for this. Since this has by now been tested in a variety of scenarios I'm relatively sure it will be safe but I'm redoing theory 41000000 to see whether something changed in the final FKs, better safe than sorry.

My comments are mostly in the direction of future maintainability when someone else is tasked with pineko, given that afaia half of the people that have participated in this PR will not be with us in about six month time

pyproject.toml Show resolved Hide resolved
src/pineko/cli/compare.py Show resolved Hide resolved
src/pineko/comparator.py Show resolved Hide resolved
src/pineko/comparator.py Outdated Show resolved Hide resolved
src/pineko/evolve.py Outdated Show resolved Hide resolved
src/pineko/evolve.py Outdated Show resolved Hide resolved
src/pineko/evolve.py Outdated Show resolved Hide resolved
src/pineko/evolve.py Show resolved Hide resolved
src/pineko/evolve.py Outdated Show resolved Hide resolved
src/pineko/evolve.py Outdated Show resolved Hide resolved
giacomomagni and others added 2 commits August 16, 2024 12:07
Co-authored-by: Juan M. Cruz-Martinez <[email protected]>
Co-authored-by: Juan M. Cruz-Martinez <[email protected]>
@scarlehoff scarlehoff mentioned this pull request Aug 16, 2024
Copy link
Member

@scarlehoff scarlehoff left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you very much @giacomomagni and apologies for the wait, I can reproduce 41_000_000 from master to whatever np.allclose precision gives.

@scarlehoff
Copy link
Member

Before merging, I see that both @felixhekhorn and @andreab1997 had requested changes. From his last message I guess @felixhekhorn is ok with merging, not sure about @andreab1997 ?

@andreab1997
Copy link
Contributor

Before merging, I see that both @felixhekhorn and @andreab1997 had requested changes. From his last message I guess @felixhekhorn is ok with merging, not sure about @andreab1997 ?

Give me just the time to have a look and I 'll let you know

@scarlehoff scarlehoff merged commit c04f55f into main Aug 21, 2024
6 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request
Projects
None yet
Development

Successfully merging this pull request may close these issues.

7 participants