Skip to content

This is part of the coursework for CM704 Data Mining module of MSc. in Big Data Analytics of Robert Gordon University

Notifications You must be signed in to change notification settings

Muljayan/ny-stock-exchange-analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 

Repository files navigation

Objectives

  1. Preprocess the dataset as specified in the data mining process.
    1. Handle Missing Values and Outliers if any
    2. Produce Q-Q Plots and Histograms of the features, and apply the transformations if required.
    3. If it is required, apply suitable feature coding techniques.
    4. Scale and/or standardized the features, produce relevant graphs to show the scaling/ standardizing effect.
    5. If necessary, apply feature discretization, and produce a relevant graph to show the discretization
  2. Perform Feature Engineering by executing the following task:
    1. Appropriately use PCA (Principal Component Analysis) or SVD (Singular Value Decomposition) for feature reduction.
    2. Identify significant and independent features using appropriate techniques. Show how you selected the features using suitable graphs.
  3. Apply the following techniques to predict the value of Y (Estimated Shares Outstanding) for the test dataset (K =10)
    1. Linear Regression with Cross Validation
    2. Lasso Regression with Cross Validation
    3. Ridge Regression with Cross Validation
  4. Using suitable evaluation matrices, compare the applicability of different regression models on the given Dataset.

About

This is part of the coursework for CM704 Data Mining module of MSc. in Big Data Analytics of Robert Gordon University

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published