Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Create Python script to track usage of best practices in Mobility Database feeds #72 #275

Merged
merged 5 commits into from
Sep 26, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -134,4 +134,6 @@ dmypy.json

# Mac
*/.DS_Store
.DS_Store
.DS_Store

cebc62a4-ed30-4d1b-9816-53b3376baabc/
38 changes: 38 additions & 0 deletions compliance_track/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
# Best practices and bad practices tracking

This is a Python script to track usage of best practices and bad practices in the Mobility Database feeds.

## Table of Contents

* [Installation](#installation)
* [Run the Script](#run-the-script)

## Installation
### Gcloud installation
Install the `gcloud CLI` following the instructions in the [official documentation](https://cloud.google.com/sdk/docs/install) and authenticate yourself.

Once it's completed, make sure you can access the [mobilitydata-gtfs-validation-results bucket](https://console.cloud.google.com/storage/browser/mobilitydata-gtfs-validation-results;tab=objects?forceOnBucketsSortingFiltering=true&project=md-poc-playground&supportedpurview=project&prefix=&forceOnObjectsSortingFiltering=false).

### Python environment
Create a Python virtual environment as described [here](https://github.com/MobilityData/mobility-database-catalogs/blob/main/README.md#installation).
Once the described installation steps are successfully completed you should install `xlsxwriter`:
```sh
$ pip install xlsxwriter
```

### Retrieve reports from the Google Cloud bucket
After activating the virtual environment and being in the root directory of the mobility-database-catalog repository, run the following commands:
```sh
$ pip install gsutil
$ gsutil -m cp -r "gs://mobilitydata-gtfs-validation-results/reports/2023-06-06T02:45/cebc62a4-ed30-4d1b-9816-53b3376baabc" .
```

## Run the script
Simply run:
```sh
$ python3 -m compliance_track.main
```
To produce the report containing details about practices under discussion run:
```sh
$ python3 -m compliance_track.details
```
Empty file added compliance_track/__init__.py
Empty file.
121 changes: 121 additions & 0 deletions compliance_track/constants.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
from zipfile import ZipFile
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

suggestion: Please add a documentation header to Python scripts with a brief usage description and parameters if applicable.


import pandas as pd

from compliance_track.validation import has_defined_values, extension_file_has_columns, cross_validate_blocks, \
current_validator, validate_sub_directory_exists, validate_shape_dist_traveled

FILE = "file"
FIELD = "field"
RULE_TO_COUNT = "rule to count instance"
VALIDATOR = "validator"
RULE_ID = "rule_id"
GC_COPY_PATH = "cebc62a4-ed30-4d1b-9816-53b3376baabc"

BEST_PRACTICES_RULES = pd.DataFrame([
{
FILE: "routes.txt",
FIELD: "route_short_name",
RULE_TO_COUNT: "route_short_name is !empty AND routes.route_long_name is empty",
VALIDATOR: lambda file_path, report_folder_path, extension_file:
has_defined_values(file_path, extension_file, "route_short_name") and
has_defined_values(file_path, extension_file, "route_long_name", check_undefined=True)
},
{
FILE: "routes.txt",
FIELD: "agency_id",
RULE_TO_COUNT: "agency_id is !empty AND there is only one agency_id in agency.txt",
VALIDATOR: lambda file_path, report_folder_path, extension_file:
current_validator(report_folder_path, 'missing_recommended_field', extension_file, 'agency_id')
},
{
FILE: "agency.txt",
FIELD: "agency_id",
RULE_TO_COUNT: "agency_id is !empty AND there is only one agency_id in agency.txt",
VALIDATOR: lambda file_path, report_folder_path, extension_file:
current_validator(report_folder_path, 'missing_recommended_field', extension_file, 'agency_id')
},
{
FILE: "fare_attributes.txt",
FIELD: "agency_id",
RULE_TO_COUNT: "agency_id is !empty AND there is only one agency_id in agency.txt",
VALIDATOR: lambda file_path, report_folder_path, extension_file:
current_validator(report_folder_path, 'missing_recommended_field', extension_file, 'agency_id')
},
{
FILE: "feed_info.txt",
FIELD: "",
RULE_TO_COUNT: "feed_info.txt is !empty AND there is no translations.txt file",
VALIDATOR: lambda file_path, report_folder_path, extension_file:
current_validator(report_folder_path, 'missing_recommended_file', extension_file, None)
},
{
FILE: "feed_info.txt",
FIELD: "feed_start_date",
RULE_TO_COUNT: "field is !empty",
VALIDATOR: lambda file_path, report_folder_path, extension_file:
current_validator(report_folder_path, 'missing_recommended_field', extension_file, 'feed_start_date')
},
{
FILE: "feed_info.txt",
FIELD: "feed_end_date",
RULE_TO_COUNT: "field is !empty",
VALIDATOR: lambda file_path, report_folder_path, extension_file:
current_validator(report_folder_path, 'missing_recommended_field', extension_file, 'feed_end_date')
},
{
FILE: "feed_info.txt",
FIELD: "feed_version",
RULE_TO_COUNT: "field is !empty",
VALIDATOR: lambda file_path, report_folder_path, extension_file:
current_validator(report_folder_path, 'missing_recommended_field', extension_file, 'feed_version')
},
{
FILE: "feed_info.txt",
FIELD: "feed_contact_email",
RULE_TO_COUNT: "feed_contact_email is !empty AND there is no feed_contact_url",
VALIDATOR: lambda file_path, report_folder_path, extension_file:
has_defined_values(file_path, extension_file, "feed_contact_url", check_undefined=True)
and has_defined_values(file_path, extension_file, "feed_contact_email")
},
{
FILE: "feed_info.txt",
FIELD: "feed_contact_url",
RULE_TO_COUNT: "feed_contact_url is !empty AND there is no feed_contact_email",
VALIDATOR: lambda file_path, report_folder_path, extension_file:
has_defined_values(file_path, extension_file, "feed_contact_email", check_undefined=True)
and has_defined_values(file_path, extension_file, "feed_contact_url")
},
{
FILE: "stop_times.txt",
FIELD: "timepoint",
RULE_TO_COUNT: "column exists",
VALIDATOR: lambda file_path, report_folder_path, extension_file:
current_validator(report_folder_path, 'missing_timepoint_column', extension_file, None)
},
{
FILE: "trips.txt",
FIELD: "block_id",
RULE_TO_COUNT: "block_id is !empty AND the row with block_id has a trip_id that is included in frequences.txt",
VALIDATOR: lambda file_path, report_folder_path, extension_file: cross_validate_blocks(file_path)
}
])

BEST_PRACTICES_RULES[RULE_ID] = [f"rule_{i}" for i in range(1, len(BEST_PRACTICES_RULES) + 1)]


BAD_PRACTICES_RULES = pd.DataFrame([
{
FILE: "zip subfolder within feed",
FIELD: "",
RULE_TO_COUNT: "zip subfolder exists",
VALIDATOR: lambda file_path, _, __: validate_sub_directory_exists(file_path)
},
{
FILE: "",
FIELD: "shape_dist_traveled",
RULE_TO_COUNT: "stop_times.shape_dist_traveled exceeds maximum shapes.shape_dist_traveled",
VALIDATOR: lambda file_path, _, __: validate_shape_dist_traveled(file_path)
},
])
BAD_PRACTICES_RULES[RULE_ID] = [f"rule_{i}" for i in range(1, len(BAD_PRACTICES_RULES) + 1)]
54 changes: 54 additions & 0 deletions compliance_track/details.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
import os

import pandas as pd
from requests import RequestException

from compliance_track.validation import download_latest_dataset, get_sub_directories, get_exceeded_shape_dist
from tools.constants import GTFS
from tools.operations import get_sources

pd.options.mode.chained_assignment = None

# script to get details for rules under review
if __name__ == '__main__':
# retrieve data
dataset = get_sources(GTFS)
rule_1_results = pd.DataFrame({
'mdb_id': [],
'sub_folders_titles': []
})
rule_2_results = pd.DataFrame({
'mdb_id': [],
'trip_id': [],
'shape_id': [],
'max_stop_times': [],
'max_shapes': [],
'relative_diff': [],
})

for data in dataset.values():
mdb_id = data['mdb_source_id']
try:
dataset_path = download_latest_dataset(data)
except RequestException:
continue

# get results for subfolders
sub_folders_names = get_sub_directories(dataset_path)
if len(sub_folders_names) > 0:
sub_folders_names = ", ".join(sub_folders_names)
rule_1_results = rule_1_results.append(pd.Series([mdb_id, sub_folders_names], index=rule_1_results.columns), ignore_index=True)

# get results for exceeded max distance
exceeded_max_dist = get_exceeded_shape_dist(dataset_path)
if exceeded_max_dist is not None and len(exceeded_max_dist) > 0:
exceeded_max_dist['mdb_id'] = mdb_id
rule_2_results = pd.concat([rule_2_results, exceeded_max_dist], axis=0)

# clean up
os.remove(dataset_path)
print(mdb_id)
with pd.ExcelWriter('details.xlsx', engine='xlsxwriter') as writer:
rule_1_results.to_excel(writer, sheet_name=f'Subfolders Details', index=False)
rule_2_results.to_excel(writer, sheet_name=f'Max Dist Details', index=False)
print('Completed. Check details.xlsx file.')
96 changes: 96 additions & 0 deletions compliance_track/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
import os

import numpy as np
import pandas as pd
from requests import RequestException

from compliance_track.constants import BEST_PRACTICES_RULES, GC_COPY_PATH, BAD_PRACTICES_RULES, VALIDATOR
from compliance_track.validation import download_latest_dataset
from tools.constants import GTFS
from tools.operations import get_sources

pd.options.mode.chained_assignment = None


def validate_practices(practices, results):
for index, best_practice in practices.iterrows():
results.loc[results.mdb_id == mdb_id, best_practice.rule_id] = \
best_practice.validator(dataset_path, report_folder_path, best_practice.file)


def init_results_container(practices):
results = pd.DataFrame(columns=["mdb_id"] + list(practices.rule_id))
results.mdb_id = list(dataset.keys())
results[practices.rule_id] = False
return results


def write_results(file_writer, practices, results, prefix):
practices.drop(columns=[VALIDATOR]).to_excel(file_writer, sheet_name=f'{prefix} Rules', index=False)
results.to_excel(file_writer, sheet_name=f'{prefix} Results', index=False)
pd.DataFrame(results.count()).T.to_excel(file_writer, sheet_name=f'{prefix} Count', index=False)


def format_results(practices, results):
final_results = pd.DataFrame(columns=practices.rule_id)
for rule in practices.rule_id:
mdb_ids = list(results[results[rule]].mdb_id)
if len(mdb_ids) == 0:
continue
if len(mdb_ids) > len(final_results):
final_results = final_results.reindex(index=range(len(mdb_ids)))
else:
mdb_ids += [np.nan for _ in range(len(final_results) - len(mdb_ids))]
final_results[rule] = mdb_ids
return final_results


if __name__ == '__main__':
# retrieve report folders available
if not os.path.exists(GC_COPY_PATH):
print('Please import report data using gsutil as described in README.md. Make sure the data is included in the'
' root of mobility-database-catalogs.')
exit(1)
report_results_folders = os.listdir(GC_COPY_PATH)
report_results_folders = [f'{GC_COPY_PATH}/{folder_name}/report-output-4.1.0/report.json'
for folder_name in report_results_folders]

# retrieve data
dataset = get_sources(GTFS)

best_practice_results = init_results_container(BEST_PRACTICES_RULES)
bad_practice_results = init_results_container(BAD_PRACTICES_RULES)

for data in dataset.values():
mdb_id = data['mdb_source_id']

report_folder_path = [folder_name for folder_name in report_results_folders
if len(folder_name.split('/')) > 1 and folder_name.split('/')[1].endswith(f'-{mdb_id}')]
if len(report_folder_path) != 1:
continue

report_folder_path = report_folder_path[0]

# retrieve data
try:
dataset_path = download_latest_dataset(data)
except RequestException as e:
continue

# validate compliance
validate_practices(BEST_PRACTICES_RULES, best_practice_results)
validate_practices(BAD_PRACTICES_RULES, bad_practice_results)

# clean up
os.remove(dataset_path)
print(mdb_id)

# formatting and saving the results
final_results_best_practices = format_results(BEST_PRACTICES_RULES, best_practice_results)
final_results_bad_practices = format_results(BAD_PRACTICES_RULES, bad_practice_results)

# write results
with pd.ExcelWriter('output.xlsx', engine='xlsxwriter') as writer:
write_results(writer, BEST_PRACTICES_RULES, final_results_best_practices, 'Best Practices')
write_results(writer, BAD_PRACTICES_RULES, final_results_bad_practices, 'Practice Review')
print('Completed. Check output.xlsx file.')
Loading