Implementation of the IEEE TASE paper Stochastic Economic Lot Scheduling via Self-Attention based Deep Reinforcement Learning. IEEE Transactions on Automation Science and Engineering, 2023.
@ARTICLE{
author={Song, Wen and Mi, Nan and Li, Qiqiang and Zhuang, Jing and Cao, Zhiguang},
journal={IEEE Transactions on Automation Science and Engineering},
title={Stochastic Economic Lot Scheduling via Self-Attention based Deep Reinforcement Learning},
year={2023},
volume={},
number={},
pages={1-12},
doi={10.1109/TASE.2023.3248229}
}
git clone https://github.com/Meeea-914/elsp_drl.git & cd elsp_drl
python3 -m venv venv
source venv/bin/activate
Install gpu or cpu version pytorch==1.7
pip install -r requirments.txt
The usage of files or directories:
elsp_env_manager - Python module for ELSP simulation
experiment - Main functional module
config.yaml - Experiment config file
The help context:
Usage: run.py train [OPTIONS]
Options:
-t, --net_type [ssa|mlp] Select the type of network to use
-e, --env_no [3|4|5|6] Set the number [i] of simulation environment,
where i means there are i products
-h, --help Show this message and exit.
Usage: run.py evaluate [OPTIONS]
Options:
-t, --net_type [ssa|mlp] Select the type of network to use
-e, --env_no [3|4|5|6] Set the number [i] of simulation environment,
where i means there are i products
-s, --demand_scale FLOAT Set the demand scale of all products
-m, --model_path TEXT Give the path of a trainded model file to
evaluate
-r, --result_xlsx_path TEXT Give the path of the result xlsx file
-h, --help Show this message and exit.
python run.py train -t ssa -e 3
python run.py train -t ssa -e 4
python run.py train -t ssa -e 5
python run.py train -t ssa -e 6
python run.py train -t mlp -e 3
python run.py evaluate -t ssa -e 3 -s 1 -m /path/to/a/optimized/model
python run.py evaluate -t mlp -e 3 -s 1 -m /path/to/a/optimized/model