-
-
Notifications
You must be signed in to change notification settings - Fork 56
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Also, refactor mathics.eval.arithmetic to remove eval functions belonging to mathics.builtin.arithfns, and mathics.builtin.numeric
- Loading branch information
Showing
8 changed files
with
1,112 additions
and
600 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
""" | ||
Module tracking eval functions under mathics.builtin.arithfns | ||
""" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,270 @@ | ||
# -*- coding: utf-8 -*- | ||
|
||
""" | ||
evaluation function for builtins in mathics.builtin.arithfns.basic | ||
Many of these depend on the evaluation context. Conversions to SymPy are | ||
used just as a last resource. | ||
""" | ||
|
||
from typing import Optional | ||
|
||
import mpmath | ||
import sympy | ||
|
||
# Note: it is important *not* use: from mathics.eval.tracing import run_sympy | ||
# but instead import the module and access below as tracing.run_sympy. | ||
# This allows us change where tracing.run_sympy points at runtime. | ||
from mathics.core.atoms import ( | ||
Integer, | ||
Integer0, | ||
Integer1, | ||
Integer2, | ||
IntegerM1, | ||
Number, | ||
Rational, | ||
Real, | ||
) | ||
from mathics.core.convert.mpmath import from_mpmath | ||
from mathics.core.convert.sympy import from_sympy | ||
from mathics.core.element import BaseElement, ElementsProperties | ||
from mathics.core.expression import Expression | ||
from mathics.core.number import min_prec | ||
from mathics.core.symbols import SymbolPlus, SymbolPower, SymbolTimes | ||
from mathics.core.systemsymbols import SymbolIndeterminate | ||
from mathics.eval.arithmetic import ( | ||
eval_Power_number, | ||
segregate_numbers_from_sorted_list, | ||
) | ||
|
||
RationalMOneHalf = Rational(-1, 2) | ||
RealM0p5 = Real(-0.5) | ||
RealOne = Real(1.0) | ||
|
||
|
||
def eval_Plus(*items: BaseElement) -> BaseElement: | ||
"evaluate Plus for general elements" | ||
numbers, items_tuple = segregate_numbers_from_sorted_list(*items) | ||
elements = [] | ||
last_item = last_count = None | ||
number = eval_add_numbers(*numbers) if numbers else Integer0 | ||
|
||
# This reduces common factors | ||
# TODO: Check if it possible to avoid the conversions back and forward to sympy. | ||
def append_last(): | ||
if last_item is not None: | ||
if last_count == 1: | ||
elements.append(last_item) | ||
else: | ||
if last_item.has_form("Times", None): | ||
elements.append( | ||
Expression( | ||
SymbolTimes, from_sympy(last_count), *last_item.elements | ||
) | ||
) | ||
else: | ||
elements.append( | ||
Expression(SymbolTimes, from_sympy(last_count), last_item) | ||
) | ||
|
||
for item in items_tuple: | ||
count = rest = None | ||
if item.has_form("Times", None): | ||
for element in item.elements: | ||
if isinstance(element, Number): | ||
count = element.to_sympy() | ||
rest = item.get_mutable_elements() | ||
rest.remove(element) | ||
if len(rest) == 1: | ||
rest = rest[0] | ||
else: | ||
rest.sort() | ||
rest = Expression(SymbolTimes, *rest) | ||
break | ||
if count is None: | ||
count = sympy.Integer(1) | ||
rest = item | ||
if last_item is not None and last_item == rest: | ||
last_count = last_count + count | ||
else: | ||
append_last() | ||
last_item = rest | ||
last_count = count | ||
append_last() | ||
|
||
# now elements contains the symbolic terms which can not be simplified. | ||
# by collecting common symbolic factors. | ||
if not elements: | ||
return number | ||
|
||
if number is not Integer0: | ||
elements.insert(0, number) | ||
elif len(elements) == 1: | ||
return elements[0] | ||
|
||
elements.sort() | ||
return Expression( | ||
SymbolPlus, | ||
*elements, | ||
elements_properties=ElementsProperties(False, False, True), | ||
) | ||
|
||
|
||
def eval_Times(*items: BaseElement) -> Optional[BaseElement]: | ||
elements = [] | ||
numbers = [] | ||
# find numbers and simplify Times -> Power | ||
numbers, symbolic_items = segregate_numbers_from_sorted_list(*(items)) | ||
# This loop handles factors representing infinite quantities, | ||
# and factors which are powers of the same basis. | ||
|
||
for item in symbolic_items: | ||
if item is SymbolIndeterminate: | ||
return item | ||
# Process powers | ||
if elements: | ||
previous_elem = elements[-1] | ||
if item == previous_elem: | ||
elements[-1] = Expression(SymbolPower, previous_elem, Integer2) | ||
continue | ||
elif item.has_form("Power", 2): | ||
base, exp = item.elements | ||
if previous_elem.has_form("Power", 2) and base.sameQ( | ||
previous_elem.elements[0] | ||
): | ||
exp = eval_Plus(exp, previous_elem.elements[1]) | ||
elements[-1] = Expression( | ||
SymbolPower, | ||
base, | ||
exp, | ||
) | ||
continue | ||
if base.sameQ(previous_elem): | ||
exp = eval_Plus(Integer1, exp) | ||
elements[-1] = Expression( | ||
SymbolPower, | ||
base, | ||
exp, | ||
) | ||
continue | ||
elif previous_elem.has_form("Power", 2) and previous_elem.elements[0].sameQ( | ||
item | ||
): | ||
exp = eval_Plus(Integer1, previous_elem.elements[1]) | ||
elements[-1] = Expression( | ||
SymbolPower, | ||
item, | ||
exp, | ||
) | ||
continue | ||
else: | ||
item = item | ||
# Otherwise, just append the element... | ||
elements.append(item) | ||
|
||
number = eval_multiply_numbers(*numbers) if numbers else Integer1 | ||
|
||
if len(elements) == 0 or number is Integer0: | ||
return number | ||
|
||
if number is IntegerM1 and elements and elements[0].has_form("Plus", None): | ||
elements[0] = Expression( | ||
elements[0].get_head(), | ||
*[ | ||
Expression(SymbolTimes, IntegerM1, element) | ||
for element in elements[0].elements | ||
], | ||
) | ||
number = Integer1 | ||
|
||
if number is not Integer1: | ||
elements.insert(0, number) | ||
|
||
if len(elements) == 1: | ||
return elements[0] | ||
|
||
elements = sorted(elements) | ||
items_elements = items | ||
if len(elements) == len(items_elements) and all( | ||
elem.sameQ(item) for elem, item in zip(elements, items_elements) | ||
): | ||
return None | ||
|
||
return Expression( | ||
SymbolTimes, | ||
*elements, | ||
elements_properties=ElementsProperties(False, False, True), | ||
) | ||
|
||
|
||
def eval_add_numbers( | ||
*numbers: Number, | ||
) -> BaseElement: | ||
""" | ||
Add the elements in ``numbers``. | ||
""" | ||
if len(numbers) == 0: | ||
return Integer0 | ||
if len(numbers) == 1: | ||
return numbers[0] | ||
|
||
is_machine_precision = any(number.is_machine_precision() for number in numbers) | ||
if is_machine_precision: | ||
terms = (item.to_mpmath() for item in numbers) | ||
number = mpmath.fsum(terms) | ||
return from_mpmath(number) | ||
|
||
prec = min_prec(*numbers) | ||
if prec is not None: | ||
# For a sum, what is relevant is the minimum accuracy of the terms | ||
with mpmath.workprec(prec): | ||
terms = (item.to_mpmath() for item in numbers) | ||
number = mpmath.fsum(terms) | ||
return from_mpmath(number, precision=prec) | ||
else: | ||
return from_sympy(sum(item.to_sympy() for item in numbers)) | ||
|
||
|
||
def eval_inverse_number(n: Number) -> Number: | ||
""" | ||
Eval 1/n | ||
""" | ||
if isinstance(n, Integer): | ||
n_value = n.value | ||
if n_value == 1 or n_value == -1: | ||
return n | ||
return Rational(-1, -n_value) if n_value < 0 else Rational(1, n_value) | ||
if isinstance(n, Rational): | ||
n_num, n_den = n.value.as_numer_denom() | ||
if n_num < 0: | ||
n_num, n_den = -n_num, -n_den | ||
if n_num == 1: | ||
return Integer(n_den) | ||
return Rational(n_den, n_num) | ||
# Otherwise, use power.... | ||
return eval_Power_number(n, IntegerM1) | ||
|
||
|
||
def eval_multiply_numbers(*numbers: Number) -> Number: | ||
""" | ||
Multiply the elements in ``numbers``. | ||
""" | ||
if len(numbers) == 0: | ||
return Integer1 | ||
if len(numbers) == 1: | ||
return numbers[0] | ||
|
||
is_machine_precision = any(number.is_machine_precision() for number in numbers) | ||
if is_machine_precision: | ||
factors = (item.to_mpmath() for item in numbers) | ||
number = mpmath.fprod(factors) | ||
return from_mpmath(number) | ||
|
||
prec = min_prec(*numbers) | ||
if prec is not None: | ||
with mpmath.workprec(prec): | ||
factors = (item.to_mpmath() for item in numbers) | ||
number = mpmath.fprod(factors) | ||
return from_mpmath(number, prec) | ||
else: | ||
return from_sympy(sympy.Mul(*(item.to_sympy() for item in numbers))) |
Oops, something went wrong.