Skip to content

MatheusBueno782/Random_Forest

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 

Repository files navigation

Random_Forest

Part 1 - Description of the theory

Part 2 - Basic tests on simulated data

In [ ]: from sklearn.datasets import make_blobs x_blobs,y_blobs = make_blobs(n_samples=2000,n_features=2,centers=4,random_state=0)

from matplotlib import pyplot pyplot.scatter(x[:,0],x[:,1],c=y)

from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x,y)

from sklearn.ensemble import RandomForestClassifier classifier = RandomForestClassifier(n_estimators=10) classifier.fit(x_train,y_train)

print("Accuracy on the training set {}%".format(classifier.score(x_train,y_train)*100)) print("Accuracy on the test set {}%".format(classifier.score(x_test,y_test)*100))

train_acc = list() test_acc = list() # list to add the test set accuracies test_ks = range(1,25)# list containing values of k to be tested

for k in tqdm.tqdm(test_ks): local_classifier = RandomForestClassifier(n_estimators=k) local_classifier.fit(x_train,y_train) train_acc.append(local_classifier.score(x_train,y_train)) test_acc.append(local_classifier.score(x_test,y_test))

plt.plot(test_ks,train_acc,color="blue",label="train set") plt.plot(test_ks,test_acc,color="green",label="test set") plt.xlabel("K") plt.ylabel("Accuracy") plt.legend() print("Best k: {}, Best test accuracy {}%".format(test_ks[np.argmax(test_acc)],max(test_acc)*100))

from sklearn.metrics import classification_report,confusion_matrix y_pred_train = classifier.predict(x_train) report = classification_report(y_true=y_train,y_pred=y_pred_train) matrix = confusion_matrix(y_true=y_train,y_pred=y_pred_train) print("Training Set:") print(report) print(matrix) plt.matshow(matrix) plt.colorbar() plt.xlabel("Real class") plt.ylabel("Predicted class")

y_pred_test = classifier.predict(x_test) report = classification_report(y_true=y_test,y_pred=y_pred_test) matrix = confusion_matrix(y_true=y_test,y_pred=y_pred_test) print("Test Set:") print(report) print(matrix) plt.matshow(matrix) plt.colorbar() plt.xlabel("Real class") plt.ylabel("Predicted class")

from matplotlib.colors import ListedColormap def plot_boundaries(classifier,X,Y,h=0.2): x0_min, x0_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x1_min, x1_max = X[:, 1].min() - 1, X[:, 1].max() + 1 x0, x1 = np.meshgrid(np.arange(x0_min, x0_max,h), np.arange(x1_min, x1_max,h)) dataset = np.c_[x0.ravel(),x1.ravel()] Z = classifier.predict(dataset)

# Put the result into a color plot
Z = Z.reshape(x0.shape)
plt.figure()
plt.pcolormesh(x0, x1, Z)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y,
            edgecolor='k', s=20)
plt.xlim(x0.min(), x0.max())
plt.ylim(x1.min(), x1.max())

plot_boundaries(classifier,x_train,y_train)

Part 3 - Advanced tests and analysis on Pyrat datasets

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published