Skip to content

MartKl/CS_image_recovery_demo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pit --- Pictures: Iterative Thresholding algorithms

A compressed sensing based image recovery demonstration

Author: Martin Kliesch

A simple and fast implementation of the iterative hard and soft threosholding algorithms (IHT and ISTA) for image recovery. It provides:

  • Reconstructions of images from few of their pixels (masked images) (see the Jupyter notebook demoIHT.ipynb for a working example)
  • It relies on the images being sparse under
  • Possible thresholding operations:
    • Hard thresholding (IHT)
    • Soft thresholding (ISTA)
  • A demonstration of the functioning of image compression is included (Jupyter notebook demo_image_compression.ipynb)

How to run it

A simple example can be found in the Jupyter notebook demoIHT.ipynb.

Description of what it does

Given a picture (left image) we remove a large number of its pixels (middle image). Then we can reconstructs the image (right image) from the middle one; see the Jupyter notebook demo_image_compression.ipynb on how it is done.

Given picture 95% of its pixels removed Reconstruction

How it works (theory)

Images are compressible (see demo_image_compression.ipynb for an illustration). Effectively, the reconstruction algorithms of pit search for an image in the space of compressed images that is compatible with the given pixels.

Mathematical description

Let T be an invertible transformation taking images to vectors so that the vectors are sparse (i.e., many coefficients are zero) and let iT be the inverse of T. Examples for such a T are the DCT and many versions of the WT. Moreover, let TO be a thresholding operator (hard or soft thresholding).

Suppose we are given a subset of pixels Xsub of an image Xorig and the indices mask of these pixels. Then the reconstruction algorithm pit.estimate essentially does the following iteration:

X = Xsub
repeat
    x = TO( T(X) )
    X = iT(x)
until a stopping criterion is met

For certain transformations T this algorithm essentially solves the problem:

minimize     norm( T(X), L1 )
subject to   norm( X(mask) - Xsub, Frobenius) <= eta

In order to rigorously guarantee this procedure to work T needs to satisfy certain properties. If X is sparse and there are enough pixels in Xsub (depending on the sparsity of X) then the minimum is attained for Xrec that is eta-close to X in Frobenius norm.

Acknowledgment

I thank Stephan Wäldchen for discussions. This project has been funded by the National Science Centre, Poland (Polonez 2015/19/P/ST2/03001), i.e., This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 665778.

 

References

  • S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing (Birkhäuser, 2013)
  • J. Bobin, J.-L. Starck, and R. Ottensamer, Compressed Sensing in Astronomy, arXiv:0802.0131
  • A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2(1), 183–202 (2009)