Skip to content

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

License

Notifications You must be signed in to change notification settings

Marina2468/SimCLR-PASTIS

 
 

Repository files navigation

SimCLR-PASTIS: Adaptation du workflow SimCLR pour l'entrainement d'images satellitaires.

Les images satellitaires capturées par différents capteur de la même zone peuvent être considérées comme des augmentations naturelles l'une de l'autre. Ce dépôt adapte SimCLR pour avoir en entrée du réseaux les images des capteurs différents au lieu d'augmenter artificiellement les images.

PyTorch SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

DOI

Image of SimCLR Arch

Installation

$ conda env create --name simclr --file env.yml
$ conda activate simclr
$ python run.py

Config file

Before running SimCLR, make sure you choose the correct running configurations. You can change the running configurations by passing keyword arguments to the run.py file.

$ python run.py -data ./datasets --dataset-name stl10 --log-every-n-steps 100 --epochs 100 

If you want to run it on CPU (for debugging purposes) use the --disable-cuda option.

For 16-bit precision GPU training, there NO need to to install NVIDIA apex. Just use the --fp16_precision flag and this implementation will use Pytorch built in AMP training.

Feature Evaluation

Feature evaluation is done using a linear model protocol.

First, we learned features using SimCLR on the STL10 unsupervised set. Then, we train a linear classifier on top of the frozen features from SimCLR. The linear model is trained on features extracted from the STL10 train set and evaluated on the STL10 test set.

Check the Open In Colab notebook for reproducibility.

Note that SimCLR benefits from longer training.

Linear Classification Dataset Feature Extractor Architecture Feature dimensionality Projection Head dimensionality Epochs Top1 %
Logistic Regression (Adam) STL10 SimCLR ResNet-18 512 128 100 74.45
Logistic Regression (Adam) CIFAR10 SimCLR ResNet-18 512 128 100 69.82
Logistic Regression (Adam) STL10 SimCLR ResNet-50 2048 128 50 70.075

About

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 59.6%
  • Python 40.4%