Skip to content

Commit

Permalink
Start working on next version
Browse files Browse the repository at this point in the history
  • Loading branch information
jacquev6 committed Oct 18, 2023
1 parent 31d12aa commit 94b81c5
Show file tree
Hide file tree
Showing 4 changed files with 9 additions and 9 deletions.
2 changes: 1 addition & 1 deletion doc-sources/changelog.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
Changelog
=========

Versions 0.9.0 to 0.9.1
Versions 0.9.0 to 0.9.2-dev
=======================

- Pre-process the learning set before all learning algorithms.
Expand Down
8 changes: 4 additions & 4 deletions doc-sources/get-started.rst
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ Generate a classification problem with 4 criteria and 3 categories (@todo(Docume
The generated ``problem.yml`` should look like::

# Reproduction command (with lincs version 0.9.1): lincs generate classification-problem 4 3 --random-seed 40
# Reproduction command (with lincs version 0.9.2-dev): lincs generate classification-problem 4 3 --random-seed 40
kind: classification-problem
format_version: 1
criteria:
Expand Down Expand Up @@ -137,7 +137,7 @@ Then generate an NCS classification model (@todo(Documentation, soon) Link to co
It should look like::

# Reproduction command (with lincs version 0.9.1): lincs generate classification-model problem.yml --random-seed 41 --model-type mrsort
# Reproduction command (with lincs version 0.9.2-dev): lincs generate classification-model problem.yml --random-seed 41 --model-type mrsort
kind: ncs-classification-model
format_version: 1
boundaries:
Expand Down Expand Up @@ -196,7 +196,7 @@ Then we'll need to think about the how the ``--max-imbalance`` option interacts
It should start with something like this, and contain 1000 alternatives::

# Reproduction command (with lincs version 0.9.1): lincs generate classified-alternatives problem.yml model.yml 1000 --random-seed 42 --misclassified-count 0
# Reproduction command (with lincs version 0.9.2-dev): lincs generate classified-alternatives problem.yml model.yml 1000 --random-seed 42 --misclassified-count 0
name,"Criterion 1","Criterion 2","Criterion 3","Criterion 4",category
"Alternative 1",0.37454012,0.796543002,0.95071429,0.183434784,"Category 3"
"Alternative 2",0.731993914,0.779690981,0.598658502,0.596850157,"Category 2"
Expand Down Expand Up @@ -254,7 +254,7 @@ The learning set doesn't contain all the information from the original model,
and the trained model was reconstituted from this partial information,
so it is numerically different::

# Reproduction command (with lincs version 0.9.1): lincs learn classification-model problem.yml learning-set.csv --model-type mrsort --mrsort.strategy weights-profiles-breed --mrsort.weights-profiles-breed.models-count 9 --mrsort.weights-profiles-breed.accuracy-heuristic.random-seed 43 --mrsort.weights-profiles-breed.initialization-strategy maximize-discrimination-per-criterion --mrsort.weights-profiles-breed.weights-strategy linear-program --mrsort.weights-profiles-breed.linear-program.solver glop --mrsort.weights-profiles-breed.profiles-strategy accuracy-heuristic --mrsort.weights-profiles-breed.accuracy-heuristic.processor cpu --mrsort.weights-profiles-breed.breed-strategy reinitialize-least-accurate --mrsort.weights-profiles-breed.reinitialize-least-accurate.portion 0.5 --mrsort.weights-profiles-breed.target-accuracy 1.0
# Reproduction command (with lincs version 0.9.2-dev): lincs learn classification-model problem.yml learning-set.csv --model-type mrsort --mrsort.strategy weights-profiles-breed --mrsort.weights-profiles-breed.models-count 9 --mrsort.weights-profiles-breed.accuracy-heuristic.random-seed 43 --mrsort.weights-profiles-breed.initialization-strategy maximize-discrimination-per-criterion --mrsort.weights-profiles-breed.weights-strategy linear-program --mrsort.weights-profiles-breed.linear-program.solver glop --mrsort.weights-profiles-breed.profiles-strategy accuracy-heuristic --mrsort.weights-profiles-breed.accuracy-heuristic.processor cpu --mrsort.weights-profiles-breed.breed-strategy reinitialize-least-accurate --mrsort.weights-profiles-breed.reinitialize-least-accurate.portion 0.5 --mrsort.weights-profiles-breed.target-accuracy 1.0
# Termination condition: target accuracy reached
# Number of iterations: 22
kind: ncs-classification-model
Expand Down
6 changes: 3 additions & 3 deletions doc-sources/user-guide.rst
Original file line number Diff line number Diff line change
Expand Up @@ -130,7 +130,7 @@ If those conditions are verified, you can tweak the "weights, profiles, breed" l
This should output a similar model, with slight numerical differences.

.. START other-learnings/expected-gpu+alglib-trained-model.yml
# Reproduction command (with lincs version 0.9.1): lincs learn classification-model problem.yml learning-set.csv --model-type mrsort --mrsort.strategy weights-profiles-breed --mrsort.weights-profiles-breed.models-count 9 --mrsort.weights-profiles-breed.accuracy-heuristic.random-seed 43 --mrsort.weights-profiles-breed.initialization-strategy maximize-discrimination-per-criterion --mrsort.weights-profiles-breed.weights-strategy linear-program --mrsort.weights-profiles-breed.linear-program.solver alglib --mrsort.weights-profiles-breed.profiles-strategy accuracy-heuristic --mrsort.weights-profiles-breed.accuracy-heuristic.processor gpu --mrsort.weights-profiles-breed.breed-strategy reinitialize-least-accurate --mrsort.weights-profiles-breed.reinitialize-least-accurate.portion 0.5 --mrsort.weights-profiles-breed.target-accuracy 1.0
# Reproduction command (with lincs version 0.9.2-dev): lincs learn classification-model problem.yml learning-set.csv --model-type mrsort --mrsort.strategy weights-profiles-breed --mrsort.weights-profiles-breed.models-count 9 --mrsort.weights-profiles-breed.accuracy-heuristic.random-seed 43 --mrsort.weights-profiles-breed.initialization-strategy maximize-discrimination-per-criterion --mrsort.weights-profiles-breed.weights-strategy linear-program --mrsort.weights-profiles-breed.linear-program.solver alglib --mrsort.weights-profiles-breed.profiles-strategy accuracy-heuristic --mrsort.weights-profiles-breed.accuracy-heuristic.processor gpu --mrsort.weights-profiles-breed.breed-strategy reinitialize-least-accurate --mrsort.weights-profiles-breed.reinitialize-least-accurate.portion 0.5 --mrsort.weights-profiles-breed.target-accuracy 1.0
# Termination condition: target accuracy reached
# Number of iterations: 9
kind: ncs-classification-model
Expand Down Expand Up @@ -166,7 +166,7 @@ You can also use an entirely different approach using SAT and max-SAT solvers::
It should produce a different kind of model, with the sufficient coalitions specified explicitly by their roots::

# Reproduction command (with lincs version 0.9.1): lincs learn classification-model problem.yml learning-set.csv --model-type ucncs --ucncs.approach sat-by-coalitions
# Reproduction command (with lincs version 0.9.2-dev): lincs learn classification-model problem.yml learning-set.csv --model-type ucncs --ucncs.approach sat-by-coalitions
kind: ncs-classification-model
format_version: 1
boundaries:
Expand All @@ -181,7 +181,7 @@ It should produce a different kind of model, with the sufficient coalitions spec
.. STOP
.. START other-learnings/expected-minisat-separation-trained-model.yml
# Reproduction command (with lincs version 0.9.1): lincs learn classification-model problem.yml learning-set.csv --model-type ucncs --ucncs.approach sat-by-separation
# Reproduction command (with lincs version 0.9.2-dev): lincs learn classification-model problem.yml learning-set.csv --model-type ucncs --ucncs.approach sat-by-separation
kind: ncs-classification-model
format_version: 1
boundaries:
Expand Down
2 changes: 1 addition & 1 deletion lincs/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Copyright 2023 Vincent Jacques

__version__ = "0.9.1"
__version__ = "0.9.2-dev"

# I/O
from liblincs import Criterion, Category, Problem
Expand Down

0 comments on commit 94b81c5

Please sign in to comment.