This repositiory is used to implement the aotmic fingerprint method in Chemprop.
Please refer to the paper:
Deep Learning-Based Increment Theory for Formation Enthalpy Predictions https://pubs.acs.org/doi/full/10.1021/acs.jpca.2c04848
Benchmark with the heat of formation prediction with the molecular sum-pooling and mean-pooling methods
python train.py \
--data_path heat_formation_data/new_CCSD_exp/size_split/CCSD_exp_size_train_12.csv \
--separate_val_path heat_formation_data/new_CCSD_exp/size_split/CCSD_exp_size_val_12.csv \
--separate_test_path heat_formation_data/new_CCSD_exp/size_split/CCSD_exp_size_test_12.csv \
--dataset_type regression \
--checkpoint_dir save_models/feature_4/afp_6 \
--save_dir save_models/feature_4/benchmark_models/afp_6 \
--warmup_epochs 0 --max_lr 5e-4 --init_lr 1e-4 \
--epochs 20 --final_lr 1e-5 --no_features_scaling \
--dropout 0 --hidden_size 300 --ffn_num_layers 4 \
--save_preds --fp_method atomic --activation PReLU --gpu 0
python train.py \
--data_path heat_formation_data/new_CCSD_exp/size_split/CCSD_exp_size_train_12.csv \
--separate_val_path heat_formation_data/new_CCSD_exp/size_split/CCSD_exp_size_val_12.csv \
--separate_test_path heat_formation_data/new_CCSD_exp/size_split/CCSD_exp_size_test_12.csv \
--dataset_type regression \
--checkpoint_dir save_models/feature_4/mfp_sum_6 \
--save_dir save_models/feature_4/benchmark_models/mfp_sum_6 \
--warmup_epochs 0 --max_lr 5e-4 --init_lr 1e-4 \
--epochs 20 --final_lr 1e-5 --no_features_scaling \
--dropout 0 --hidden_size 300 --ffn_num_layers 4 \
--save_preds --fp_method molecular --aggregation sum --activation PReLU --gpu 0
python train.py \
--data_path heat_formation_data/new_CCSD_exp/size_split/CCSD_exp_size_train_12.csv \
--separate_val_path heat_formation_data/new_CCSD_exp/size_split/CCSD_exp_size_val_12.csv \
--separate_test_path heat_formation_data/new_CCSD_exp/size_split/CCSD_exp_size_test_12.csv \
--dataset_type regression \
--checkpoint_dir save_models/feature_4/mfp_mean_8 \
--save_dir save_models/feature_4/benchmark_models/mfp_mean_8 \
--warmup_epochs 0 --max_lr 5e-4 --init_lr 1e-4 \
--epochs 20 --final_lr 1e-5 --no_features_scaling \
--dropout 0 --hidden_size 400 --ffn_num_layers 3 \
--save_preds --fp_method molecular --activation --gpu 0 --aggregation mean
https://github.com/chemprop/chemprop
@article{chen2022deep,
title={Deep Learning-Based Increment Theory for Formation Enthalpy Predictions},
author={Chen, Lung-Yi and Hsu, Ting-Wei and Hsiung, Tsai-Chen and Li, Yi-Pei},
journal={The Journal of Physical Chemistry A},
volume={126},
number={41},
pages={7548--7556},
year={2022},
publisher={ACS Publications}
}