Skip to content

Commit

Permalink
Add single-device nvFusions for a Transformer block modulo SDPA.
Browse files Browse the repository at this point in the history
For NVIDIA/Fuser#2199.

To run them,

```
NVFUSER_DISABLE=matmul_expr_eval python before_sdpa.py
NVFUSER_DISABLE=matmul_expr_eval python after_sdpa.py
```

`matmul_expr_eval` is disabled for a known limitation that will be fixed
soon.

I'll try to include SDPA as well. Currently, the two files implement
things before and after SDPA. For your understanding, code around
`fd.ops.uniform` corresponds to dropout. Code around `fd.ops.tanh`
corresponds to an approximated GELU layer. Code around `fd.ops.var_mean`
corresponds to layernorm.
  • Loading branch information
wujingyue committed Jul 29, 2024
1 parent 4825d95 commit 30a9dc5
Show file tree
Hide file tree
Showing 2 changed files with 279 additions and 0 deletions.
173 changes: 173 additions & 0 deletions after_sdpa.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
import torch
from nvfuser import FusionDefinition, DataType


def nvfuser_fusion_id1(fd: FusionDefinition) -> None:
T0 = fd.define_tensor(shape=[-1], contiguity=[True], dtype=DataType.BFloat16, is_cpu=False, stride_order=[0])
T1 = fd.define_tensor(
shape=[-1, -1], contiguity=[True, True], dtype=DataType.BFloat16, is_cpu=False, stride_order=[1, 0]
)
T2 = fd.define_tensor(shape=[-1], contiguity=[True], dtype=DataType.BFloat16, is_cpu=False, stride_order=[0])
T3 = fd.define_tensor(shape=[-1], contiguity=[True], dtype=DataType.BFloat16, is_cpu=False, stride_order=[0])
T4 = fd.define_tensor(shape=[-1], contiguity=[True], dtype=DataType.BFloat16, is_cpu=False, stride_order=[0])
T5 = fd.define_tensor(
shape=[-1, -1], contiguity=[True, True], dtype=DataType.BFloat16, is_cpu=False, stride_order=[1, 0]
)
T6 = fd.define_tensor(shape=[-1], contiguity=[True], dtype=DataType.BFloat16, is_cpu=False, stride_order=[0])
T7 = fd.define_tensor(
shape=[-1, -1], contiguity=[True, True], dtype=DataType.BFloat16, is_cpu=False, stride_order=[1, 0]
)
T8 = fd.define_tensor(
shape=[-1, -1, -1], contiguity=[True, True, True], dtype=DataType.BFloat16, is_cpu=False, stride_order=[2, 1, 0]
)
T9 = fd.define_tensor(
shape=[-1, -1, -1, -1],
contiguity=[True, True, True, True],
dtype=DataType.BFloat16,
is_cpu=False,
stride_order=[3, 2, 1, 0],
)
T10 = fd.ops.permute(T9, dims=[0, 2, 1, 3])
T11 = fd.ops.stride_order(T10, stride_order=[3, 2, 1, 0])
S12 = fd.define_scalar(16, dtype=DataType.Int)
S13 = fd.define_scalar(128, dtype=DataType.Int)
S14 = fd.define_scalar(1600, dtype=DataType.Int)
V15 = fd.define_vector([S12, S13, S14], dtype=DataType.Int)
T16 = fd.ops.reshape(T11, new_shape=V15)
S17 = fd.define_scalar(2048, dtype=DataType.Int)
S18 = fd.define_scalar(1600, dtype=DataType.Int)
V19 = fd.define_vector([S17, S18], dtype=DataType.Int)
T20 = fd.ops.reshape(T16, new_shape=V19)
T21 = fd.ops.linear(T20, T1, T0)
S22 = fd.define_scalar(16, dtype=DataType.Int)
S23 = fd.define_scalar(128, dtype=DataType.Int)
S24 = fd.define_scalar(1600, dtype=DataType.Int)
V25 = fd.define_vector([S22, S23, S24], dtype=DataType.Int)
T26 = fd.ops.reshape(T21, new_shape=V25)
S27 = fd.define_scalar(0.00000, dtype=DataType.Double)
S28 = fd.define_scalar(1.00000, dtype=DataType.Double)
S29 = fd.define_scalar(16, dtype=DataType.Int)
S30 = fd.define_scalar(128, dtype=DataType.Int)
S31 = fd.define_scalar(1600, dtype=DataType.Int)
V32 = fd.define_vector([S29, S30, S31], dtype=DataType.Int)
T33 = fd.ops.uniform(S27, S28, shape=V32, dtype=DataType.BFloat16)
S34 = fd.define_scalar(0.900000, dtype=DataType.Double)
T35 = fd.ops.lt(T33, S34)
T36 = fd.ops.cast(T26, dtype=DataType.Float)
T37 = fd.ops.cast(T35, dtype=DataType.Float)
T38 = fd.ops.mul(T36, T37)
S39 = fd.define_scalar(1.11111, dtype=DataType.Double)
T40 = fd.ops.mul(T38, S39)
T41 = fd.ops.cast(T8, dtype=DataType.Float)
T42 = fd.ops.add(T41, T40)
T43, T44 = fd.ops.var_mean(T42, dims=[2], correction=0, keepdim=False)
S45 = fd.define_scalar(16, dtype=DataType.Int)
S46 = fd.define_scalar(128, dtype=DataType.Int)
S47 = fd.define_scalar(1, dtype=DataType.Int)
V48 = fd.define_vector([S45, S46, S47], dtype=DataType.Int)
T49 = fd.ops.broadcast_in_dim(T43, shape=V48, broadcast_dims=[0, 1])
S50 = fd.define_scalar(16, dtype=DataType.Int)
S51 = fd.define_scalar(128, dtype=DataType.Int)
S52 = fd.define_scalar(1, dtype=DataType.Int)
V53 = fd.define_vector([S50, S51, S52], dtype=DataType.Int)
T54 = fd.ops.broadcast_in_dim(T44, shape=V53, broadcast_dims=[0, 1])
S55 = fd.define_scalar(1.00000e-05, dtype=DataType.Double)
T56 = fd.ops.add(T49, S55)
T57 = fd.ops.rsqrt(T56)
S58 = fd.define_scalar(16, dtype=DataType.Int)
S59 = fd.define_scalar(128, dtype=DataType.Int)
S60 = fd.define_scalar(1600, dtype=DataType.Int)
V61 = fd.define_vector([S58, S59, S60], dtype=DataType.Int)
T62 = fd.ops.broadcast_in_dim(T54, shape=V61, broadcast_dims=[0, 1, 2])
T63 = fd.ops.sub(T42, T62)
S64 = fd.define_scalar(16, dtype=DataType.Int)
S65 = fd.define_scalar(128, dtype=DataType.Int)
S66 = fd.define_scalar(1600, dtype=DataType.Int)
V67 = fd.define_vector([S64, S65, S66], dtype=DataType.Int)
T68 = fd.ops.broadcast_in_dim(T57, shape=V67, broadcast_dims=[0, 1, 2])
T69 = fd.ops.mul(T63, T68)
S70 = fd.define_scalar(16, dtype=DataType.Int)
S71 = fd.define_scalar(128, dtype=DataType.Int)
S72 = fd.define_scalar(1600, dtype=DataType.Int)
V73 = fd.define_vector([S70, S71, S72], dtype=DataType.Int)
T74 = fd.ops.broadcast_in_dim(T3, shape=V73, broadcast_dims=[2])
T75 = fd.ops.cast(T74, dtype=DataType.Float)
T76 = fd.ops.mul(T69, T75)
S77 = fd.define_scalar(16, dtype=DataType.Int)
S78 = fd.define_scalar(128, dtype=DataType.Int)
S79 = fd.define_scalar(1600, dtype=DataType.Int)
V80 = fd.define_vector([S77, S78, S79], dtype=DataType.Int)
T81 = fd.ops.broadcast_in_dim(T2, shape=V80, broadcast_dims=[2])
T82 = fd.ops.cast(T81, dtype=DataType.Float)
T83 = fd.ops.add(T76, T82)
T84 = fd.ops.cast(T83, dtype=DataType.BFloat16)
S85 = fd.define_scalar(2048, dtype=DataType.Int)
S86 = fd.define_scalar(1600, dtype=DataType.Int)
V87 = fd.define_vector([S85, S86], dtype=DataType.Int)
T88 = fd.ops.reshape(T84, new_shape=V87)
T89 = fd.ops.linear(T88, T5, T4)
S90 = fd.define_scalar(16, dtype=DataType.Int)
S91 = fd.define_scalar(128, dtype=DataType.Int)
S92 = fd.define_scalar(6400, dtype=DataType.Int)
V93 = fd.define_vector([S90, S91, S92], dtype=DataType.Int)
T94 = fd.ops.reshape(T89, new_shape=V93)
T95 = fd.ops.cast(T94, dtype=DataType.Float)
T96 = fd.ops.mul(T95, T95)
T97 = fd.ops.mul(T96, T95)
S98 = fd.define_scalar(0.500000, dtype=DataType.Double)
T99 = fd.ops.mul(S98, T95)
S100 = fd.define_scalar(0.0447150, dtype=DataType.Double)
T101 = fd.ops.mul(S100, T97)
T102 = fd.ops.add(T95, T101)
S103 = fd.define_scalar(0.797885, dtype=DataType.Double)
T104 = fd.ops.mul(S103, T102)
T105 = fd.ops.tanh(T104)
S106 = fd.define_scalar(1.00000, dtype=DataType.Double)
T107 = fd.ops.add(S106, T105)
T108 = fd.ops.mul(T99, T107)
T109 = fd.ops.cast(T108, dtype=DataType.BFloat16)
S110 = fd.define_scalar(2048, dtype=DataType.Int)
S111 = fd.define_scalar(6400, dtype=DataType.Int)
V112 = fd.define_vector([S110, S111], dtype=DataType.Int)
T113 = fd.ops.reshape(T109, new_shape=V112)
T114 = fd.ops.linear(T113, T7, T6)
S115 = fd.define_scalar(16, dtype=DataType.Int)
S116 = fd.define_scalar(128, dtype=DataType.Int)
S117 = fd.define_scalar(1600, dtype=DataType.Int)
V118 = fd.define_vector([S115, S116, S117], dtype=DataType.Int)
T119 = fd.ops.reshape(T114, new_shape=V118)
S120 = fd.define_scalar(0.00000, dtype=DataType.Double)
S121 = fd.define_scalar(1.00000, dtype=DataType.Double)
S122 = fd.define_scalar(16, dtype=DataType.Int)
S123 = fd.define_scalar(128, dtype=DataType.Int)
S124 = fd.define_scalar(1600, dtype=DataType.Int)
V125 = fd.define_vector([S122, S123, S124], dtype=DataType.Int)
T126 = fd.ops.uniform(S120, S121, shape=V125, dtype=DataType.BFloat16)
S127 = fd.define_scalar(0.900000, dtype=DataType.Double)
T128 = fd.ops.lt(T126, S127)
T129 = fd.ops.cast(T119, dtype=DataType.Float)
T130 = fd.ops.cast(T128, dtype=DataType.Float)
T131 = fd.ops.mul(T129, T130)
S132 = fd.define_scalar(1.11111, dtype=DataType.Double)
T133 = fd.ops.mul(T131, S132)
T134 = fd.ops.add(T42, T133)
T135 = fd.ops.cast(T134, dtype=DataType.BFloat16)
fd.add_output(T135)


with FusionDefinition() as fd:
nvfuser_fusion_id1(fd)

inputs = [
torch.randn((1600,), dtype=torch.bfloat16, device="cuda:0").as_strided((1600,), (1,)),
torch.randn((2560000,), dtype=torch.bfloat16, device="cuda:0").as_strided((1600, 1600), (1600, 1)),
torch.randn((1600,), dtype=torch.bfloat16, device="cuda:0").as_strided((1600,), (1,)),
torch.randn((1600,), dtype=torch.bfloat16, device="cuda:0").as_strided((1600,), (1,)),
torch.randn((6400,), dtype=torch.bfloat16, device="cuda:0").as_strided((6400,), (1,)),
torch.randn((10240000,), dtype=torch.bfloat16, device="cuda:0").as_strided((6400, 1600), (1600, 1)),
torch.randn((1600,), dtype=torch.bfloat16, device="cuda:0").as_strided((1600,), (1,)),
torch.randn((10240000,), dtype=torch.bfloat16, device="cuda:0").as_strided((1600, 6400), (6400, 1)),
torch.randn((3276800,), dtype=torch.bfloat16, device="cuda:0").as_strided((16, 128, 1600), (204800, 1600, 1)),
torch.randn((3276800,), dtype=torch.bfloat16, device="cuda:0").as_strided((16, 25, 128, 64), (204800, 8192, 64, 1)),
]
fd.execute(inputs)
106 changes: 106 additions & 0 deletions before_sdpa.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
import torch
from nvfuser import FusionDefinition, DataType


def nvfuser_fusion_id0(fd: FusionDefinition) -> None:
T0 = fd.define_tensor(shape=[-1], contiguity=[True], dtype=DataType.BFloat16, is_cpu=False, stride_order=[0])
T1 = fd.define_tensor(
shape=[-1, -1], contiguity=[True, True], dtype=DataType.BFloat16, is_cpu=False, stride_order=[1, 0]
)
T2 = fd.define_tensor(shape=[-1], contiguity=[True], dtype=DataType.BFloat16, is_cpu=False, stride_order=[0])
T3 = fd.define_tensor(shape=[-1], contiguity=[True], dtype=DataType.BFloat16, is_cpu=False, stride_order=[0])
T4 = fd.define_tensor(
shape=[-1, -1, -1], contiguity=[True, True, True], dtype=DataType.BFloat16, is_cpu=False, stride_order=[2, 1, 0]
)
T5 = fd.ops.cast(T4, dtype=DataType.Float)
T6, T7 = fd.ops.var_mean(T5, dims=[2], correction=0, keepdim=False)
S8 = fd.define_scalar(16, dtype=DataType.Int)
S9 = fd.define_scalar(128, dtype=DataType.Int)
S10 = fd.define_scalar(1, dtype=DataType.Int)
V11 = fd.define_vector([S8, S9, S10], dtype=DataType.Int)
T12 = fd.ops.broadcast_in_dim(T6, shape=V11, broadcast_dims=[0, 1])
S13 = fd.define_scalar(16, dtype=DataType.Int)
S14 = fd.define_scalar(128, dtype=DataType.Int)
S15 = fd.define_scalar(1, dtype=DataType.Int)
V16 = fd.define_vector([S13, S14, S15], dtype=DataType.Int)
T17 = fd.ops.broadcast_in_dim(T7, shape=V16, broadcast_dims=[0, 1])
S18 = fd.define_scalar(1.00000e-05, dtype=DataType.Double)
T19 = fd.ops.add(T12, S18)
T20 = fd.ops.rsqrt(T19)
S21 = fd.define_scalar(16, dtype=DataType.Int)
S22 = fd.define_scalar(128, dtype=DataType.Int)
S23 = fd.define_scalar(1600, dtype=DataType.Int)
V24 = fd.define_vector([S21, S22, S23], dtype=DataType.Int)
T25 = fd.ops.broadcast_in_dim(T17, shape=V24, broadcast_dims=[0, 1, 2])
T26 = fd.ops.sub(T5, T25)
S27 = fd.define_scalar(16, dtype=DataType.Int)
S28 = fd.define_scalar(128, dtype=DataType.Int)
S29 = fd.define_scalar(1600, dtype=DataType.Int)
V30 = fd.define_vector([S27, S28, S29], dtype=DataType.Int)
T31 = fd.ops.broadcast_in_dim(T20, shape=V30, broadcast_dims=[0, 1, 2])
T32 = fd.ops.mul(T26, T31)
S33 = fd.define_scalar(16, dtype=DataType.Int)
S34 = fd.define_scalar(128, dtype=DataType.Int)
S35 = fd.define_scalar(1600, dtype=DataType.Int)
V36 = fd.define_vector([S33, S34, S35], dtype=DataType.Int)
T37 = fd.ops.broadcast_in_dim(T3, shape=V36, broadcast_dims=[2])
T38 = fd.ops.cast(T37, dtype=DataType.Float)
T39 = fd.ops.mul(T32, T38)
S40 = fd.define_scalar(16, dtype=DataType.Int)
S41 = fd.define_scalar(128, dtype=DataType.Int)
S42 = fd.define_scalar(1600, dtype=DataType.Int)
V43 = fd.define_vector([S40, S41, S42], dtype=DataType.Int)
T44 = fd.ops.broadcast_in_dim(T2, shape=V43, broadcast_dims=[2])
T45 = fd.ops.cast(T44, dtype=DataType.Float)
T46 = fd.ops.add(T39, T45)
T47 = fd.ops.cast(T46, dtype=DataType.BFloat16)
S48 = fd.define_scalar(2048, dtype=DataType.Int)
S49 = fd.define_scalar(1600, dtype=DataType.Int)
V50 = fd.define_vector([S48, S49], dtype=DataType.Int)
T51 = fd.ops.reshape(T47, new_shape=V50)
T52 = fd.ops.linear(T51, T1, T0)
S53 = fd.define_scalar(16, dtype=DataType.Int)
S54 = fd.define_scalar(128, dtype=DataType.Int)
S55 = fd.define_scalar(4800, dtype=DataType.Int)
V56 = fd.define_vector([S53, S54, S55], dtype=DataType.Int)
T57 = fd.ops.reshape(T52, new_shape=V56)
T58 = fd.ops.slice(T57, start_indices=[0, 0, 0], end_indices=[16, 128, 1600], strides=[1, 1, 1])
T59 = fd.ops.slice(T57, start_indices=[0, 0, 1600], end_indices=[16, 128, 3200], strides=[1, 1, 1])
T60 = fd.ops.slice(T57, start_indices=[0, 0, 3200], end_indices=[16, 128, 4800], strides=[1, 1, 1])
S61 = fd.define_scalar(16, dtype=DataType.Int)
S62 = fd.define_scalar(128, dtype=DataType.Int)
S63 = fd.define_scalar(25, dtype=DataType.Int)
S64 = fd.define_scalar(64, dtype=DataType.Int)
V65 = fd.define_vector([S61, S62, S63, S64], dtype=DataType.Int)
T66 = fd.ops.reshape(T59, new_shape=V65)
T67 = fd.ops.permute(T66, dims=[0, 2, 1, 3])
S68 = fd.define_scalar(16, dtype=DataType.Int)
S69 = fd.define_scalar(128, dtype=DataType.Int)
S70 = fd.define_scalar(25, dtype=DataType.Int)
S71 = fd.define_scalar(64, dtype=DataType.Int)
V72 = fd.define_vector([S68, S69, S70, S71], dtype=DataType.Int)
T73 = fd.ops.reshape(T58, new_shape=V72)
T74 = fd.ops.permute(T73, dims=[0, 2, 1, 3])
S75 = fd.define_scalar(16, dtype=DataType.Int)
S76 = fd.define_scalar(128, dtype=DataType.Int)
S77 = fd.define_scalar(25, dtype=DataType.Int)
S78 = fd.define_scalar(64, dtype=DataType.Int)
V79 = fd.define_vector([S75, S76, S77, S78], dtype=DataType.Int)
T80 = fd.ops.reshape(T60, new_shape=V79)
T81 = fd.ops.permute(T80, dims=[0, 2, 1, 3])
fd.add_output(T74)
fd.add_output(T67)
fd.add_output(T81)


with FusionDefinition() as fd:
nvfuser_fusion_id0(fd)

inputs = [
torch.randn((4800,), dtype=torch.bfloat16, device="cuda:0").as_strided((4800,), (1,)),
torch.randn((7680000,), dtype=torch.bfloat16, device="cuda:0").as_strided((4800, 1600), (1600, 1)),
torch.randn((1600,), dtype=torch.bfloat16, device="cuda:0").as_strided((1600,), (1,)),
torch.randn((1600,), dtype=torch.bfloat16, device="cuda:0").as_strided((1600,), (1,)),
torch.randn((3276800,), dtype=torch.bfloat16, device="cuda:0").as_strided((16, 128, 1600), (204800, 1600, 1)),
]
fd.execute(inputs)

0 comments on commit 30a9dc5

Please sign in to comment.