-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
535eb81
commit 51aa024
Showing
6 changed files
with
217 additions
and
208 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,148 +1,167 @@ | ||
#include <stdio.h> | ||
|
||
#include <iostream> | ||
#include "TrigScint/Firmware/objdef.h" | ||
|
||
#include "TrigScint/Firmware/hitproducer.h" | ||
#include "TrigScint/Firmware/objdef.h" | ||
|
||
void hitproducer_hw(ap_uint<14> FIFO[NHITS][5],Hit outHit[NHITS],ap_uint<8> Peds[NHITS]){ | ||
#pragma HLS ARRAY_PARTITION variable=FIFO complete | ||
#pragma HLS ARRAY_PARTITION variable=amplitude complete | ||
#pragma HLS ARRAY_PARTITION variable=Peds complete | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[0] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[1] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[2] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[3] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[4] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[5] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[6] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[7] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[8] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[9] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[10] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[11] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[12] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[13] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[14] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[15] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[16] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[17] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[18] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[19] | ||
|
||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[20] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[21] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[22] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[23] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[24] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[25] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[26] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[27] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[28] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[29] | ||
|
||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[30] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[31] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[32] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[33] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[34] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[35] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[36] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[37] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[38] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[39] | ||
|
||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[40] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[41] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[42] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[43] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[44] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[45] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[46] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[47] | ||
|
||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[48] | ||
#pragma HLS INTERFACE ap_fifo depth=16 port=FIFO[49] | ||
|
||
|
||
#pragma HLS PIPELINE | ||
|
||
//The QIE11 card takes an analogue SiPM PE count | ||
//and converts electron counts from it via a piecewise | ||
//exponential curve into an ADC. Depending on the shunts | ||
//you use, you can affect the gain; the gains and variable | ||
//values determined here are motived primarily by those required | ||
//to get the MIP distribution seen in the 2022 beam. | ||
//The next variables show where each linear portion of the | ||
//exponential map start in charge count (edges_) and their slope; | ||
//the hitmaker delinearized the adc counts, integrates over five clockcycles | ||
//and forms a hit. | ||
|
||
/// Indices of first bin of each subrange | ||
ap_uint<14> nbins_[5] = {0, 16, 36, 57, 64}; | ||
|
||
/// Charge lower limit of all the 16 subranges | ||
ap_uint<14> edges_[17] = {0, 34, 158, 419, 517, 915, | ||
1910, 3990, 4780, 7960, 15900, 32600, | ||
38900, 64300, 128000, 261000, 350000}; | ||
/// sensitivity of the subranges (Total charge/no. of bins) | ||
ap_uint<14> sense_[16] = {3, 6, 12, 25, 25, 50, 99, 198, | ||
198, 397, 794, 1587, 1587, 3174, 6349, 12700}; | ||
|
||
for(int i = 0; i<NHITS;i++){ | ||
outHit[i].bID=-1; | ||
outHit[i].mID=0; | ||
outHit[i].Time=0; | ||
outHit[i].Amp=0; | ||
ap_uint<14> word1=FIFO[i][0];ap_uint<14> word2=FIFO[i][1];ap_uint<14> word3=FIFO[i][2]; | ||
ap_uint<14> word4=FIFO[i][3];ap_uint<14> word5=FIFO[i][4]; | ||
ap_uint<16> charge1;ap_uint<16> charge2;ap_uint<16> charge3; | ||
ap_uint<16> charge4;ap_uint<16> charge5; | ||
ap_uint<4> shunt = 1; | ||
//An identical procedure is used for all 5 clockcylces. Namely you extract the adc value from the adc+tdc | ||
//concatenated value you get from the raw strwam via (word1>>6); You then use what integer multiple of | ||
//64 it is to determine which linear segment you are on, and v1 (the remainder) to determine how far | ||
//along that linear segment your charge carried you. Together that gets you charge. | ||
|
||
ap_uint<14> rr = (word1>>6)/64; | ||
ap_uint<14> v1 = (word1>>6)%64; | ||
ap_uint<14> ss = 1*(v1>nbins_[1])+1*(v1>nbins_[2])+1*(v1>nbins_[3]); | ||
charge1 = edges_[4*rr+ss]+(v1-nbins_[ss])*sense_[4*rr+ss]+sense_[4*rr+ss]/2-1; | ||
|
||
rr = (word2>>6)/64; | ||
v1 = (word2>>6)%64; | ||
ss = 1*(v1>nbins_[1])+1*(v1>nbins_[2])+1*(v1>nbins_[3]); | ||
charge2 = edges_[4*rr+ss]+(v1-nbins_[ss])*sense_[4*rr+ss]+sense_[4*rr+ss]/2-1; | ||
|
||
rr = (word3>>6)/64; | ||
v1 = (word3>>6)%64; | ||
ss = 1*(v1>nbins_[1])+1*(v1>nbins_[2])+1*(v1>nbins_[3]); | ||
charge3 = edges_[4*rr+ss]+(v1-nbins_[ss])*sense_[4*rr+ss]+sense_[4*rr+ss]/2-1; | ||
|
||
rr = (word4>>6)/64; | ||
v1 = (word4>>6)%64; | ||
ss = 1*(v1>nbins_[1])+1*(v1>nbins_[2])+1*(v1>nbins_[3]); | ||
charge4 = edges_[4*rr+ss]+(v1-nbins_[ss])*sense_[4*rr+ss]+sense_[4*rr+ss]/2-1; | ||
|
||
rr = (word5>>6)/64; | ||
v1 = (word5>>6)%64; | ||
ss = 1*(v1>nbins_[1])+1*(v1>nbins_[2])+1*(v1>nbins_[3]); | ||
charge5 = edges_[4*rr+ss]+(v1-nbins_[ss])*sense_[4*rr+ss]+sense_[4*rr+ss]/2-1; | ||
|
||
outHit[i].bID=i; | ||
|
||
//You now are creating an output hit. The time of the hit is determined by the last part of the concatenated | ||
//streamed tdc, which is 6 bits and therefore you mask the word1 with 63 (which is 111111 in binary) so as only | ||
//to keep the tdc. | ||
|
||
outHit[i].Time=(word1 & 63); | ||
|
||
//The 36 remaining here is an artefact of the mapping that the charges have to adcs; its not particularly | ||
//meaningful except that it establishes that 0 adc corresponds to 0 charge. The .00625 value is a value | ||
//which is conglomerate but relates to the number of PE's produced; it will change based on the number of shunts | ||
//employed during a run. | ||
|
||
outHit[i].Amp=shunt*((charge1+charge2+charge3+charge4+charge5-36)*.00625); | ||
} | ||
|
||
return; | ||
void hitproducer_hw(ap_uint<14> FIFO[NHITS][5], Hit outHit[NHITS], | ||
ap_uint<8> Peds[NHITS]) { | ||
#pragma HLS ARRAY_PARTITION variable = FIFO complete | ||
#pragma HLS ARRAY_PARTITION variable = amplitude complete | ||
#pragma HLS ARRAY_PARTITION variable = Peds complete | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[0] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[1] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[2] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[3] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[4] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[5] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[6] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[7] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[8] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[9] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[10] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[11] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[12] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[13] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[14] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[15] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[16] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[17] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[18] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[19] | ||
|
||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[20] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[21] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[22] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[23] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[24] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[25] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[26] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[27] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[28] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[29] | ||
|
||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[30] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[31] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[32] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[33] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[34] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[35] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[36] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[37] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[38] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[39] | ||
|
||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[40] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[41] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[42] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[43] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[44] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[45] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[46] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[47] | ||
|
||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[48] | ||
#pragma HLS INTERFACE ap_fifo depth = 16 port = FIFO[49] | ||
|
||
#pragma HLS PIPELINE | ||
|
||
// The QIE11 card takes an analogue SiPM PE count | ||
// and converts electron counts from it via a piecewise | ||
// exponential curve into an ADC. Depending on the shunts | ||
// you use, you can affect the gain; the gains and variable | ||
// values determined here are motived primarily by those required | ||
// to get the MIP distribution seen in the 2022 beam. | ||
// The next variables show where each linear portion of the | ||
// exponential map start in charge count (edges_) and their slope; | ||
// the hitmaker delinearized the adc counts, integrates over five clockcycles | ||
// and forms a hit. | ||
|
||
/// Indices of first bin of each subrange | ||
ap_uint<14> nbins_[5] = {0, 16, 36, 57, 64}; | ||
|
||
/// Charge lower limit of all the 16 subranges | ||
ap_uint<14> edges_[17] = {0, 34, 158, 419, 517, 915, | ||
1910, 3990, 4780, 7960, 15900, 32600, | ||
38900, 64300, 128000, 261000, 350000}; | ||
/// sensitivity of the subranges (Total charge/no. of bins) | ||
ap_uint<14> sense_[16] = {3, 6, 12, 25, 25, 50, 99, 198, | ||
198, 397, 794, 1587, 1587, 3174, 6349, 12700}; | ||
|
||
for (int i = 0; i < NHITS; i++) { | ||
outHit[i].bID = -1; | ||
outHit[i].mID = 0; | ||
outHit[i].Time = 0; | ||
outHit[i].Amp = 0; | ||
ap_uint<14> word1 = FIFO[i][0]; | ||
ap_uint<14> word2 = FIFO[i][1]; | ||
ap_uint<14> word3 = FIFO[i][2]; | ||
ap_uint<14> word4 = FIFO[i][3]; | ||
ap_uint<14> word5 = FIFO[i][4]; | ||
ap_uint<16> charge1; | ||
ap_uint<16> charge2; | ||
ap_uint<16> charge3; | ||
ap_uint<16> charge4; | ||
ap_uint<16> charge5; | ||
ap_uint<4> shunt = 1; | ||
// An identical procedure is used for all 5 clockcylces. Namely you extract | ||
// the adc value from the adc+tdc concatenated value you get from the raw | ||
// strwam via (word1>>6); You then use what integer multiple of 64 it is to | ||
// determine which linear segment you are on, and v1 (the remainder) to | ||
// determine how far along that linear segment your charge carried you. | ||
// Together that gets you charge. | ||
|
||
ap_uint<14> rr = (word1 >> 6) / 64; | ||
ap_uint<14> v1 = (word1 >> 6) % 64; | ||
ap_uint<14> ss = | ||
1 * (v1 > nbins_[1]) + 1 * (v1 > nbins_[2]) + 1 * (v1 > nbins_[3]); | ||
charge1 = edges_[4 * rr + ss] + (v1 - nbins_[ss]) * sense_[4 * rr + ss] + | ||
sense_[4 * rr + ss] / 2 - 1; | ||
|
||
rr = (word2 >> 6) / 64; | ||
v1 = (word2 >> 6) % 64; | ||
ss = 1 * (v1 > nbins_[1]) + 1 * (v1 > nbins_[2]) + 1 * (v1 > nbins_[3]); | ||
charge2 = edges_[4 * rr + ss] + (v1 - nbins_[ss]) * sense_[4 * rr + ss] + | ||
sense_[4 * rr + ss] / 2 - 1; | ||
|
||
rr = (word3 >> 6) / 64; | ||
v1 = (word3 >> 6) % 64; | ||
ss = 1 * (v1 > nbins_[1]) + 1 * (v1 > nbins_[2]) + 1 * (v1 > nbins_[3]); | ||
charge3 = edges_[4 * rr + ss] + (v1 - nbins_[ss]) * sense_[4 * rr + ss] + | ||
sense_[4 * rr + ss] / 2 - 1; | ||
|
||
rr = (word4 >> 6) / 64; | ||
v1 = (word4 >> 6) % 64; | ||
ss = 1 * (v1 > nbins_[1]) + 1 * (v1 > nbins_[2]) + 1 * (v1 > nbins_[3]); | ||
charge4 = edges_[4 * rr + ss] + (v1 - nbins_[ss]) * sense_[4 * rr + ss] + | ||
sense_[4 * rr + ss] / 2 - 1; | ||
|
||
rr = (word5 >> 6) / 64; | ||
v1 = (word5 >> 6) % 64; | ||
ss = 1 * (v1 > nbins_[1]) + 1 * (v1 > nbins_[2]) + 1 * (v1 > nbins_[3]); | ||
charge5 = edges_[4 * rr + ss] + (v1 - nbins_[ss]) * sense_[4 * rr + ss] + | ||
sense_[4 * rr + ss] / 2 - 1; | ||
|
||
outHit[i].bID = i; | ||
|
||
// You now are creating an output hit. The time of the hit is determined by | ||
// the last part of the concatenated streamed tdc, which is 6 bits and | ||
// therefore you mask the word1 with 63 (which is 111111 in binary) so as | ||
// only to keep the tdc. | ||
|
||
outHit[i].Time = (word1 & 63); | ||
|
||
// The 36 remaining here is an artefact of the mapping that the charges have | ||
// to adcs; its not particularly meaningful except that it establishes that | ||
// 0 adc corresponds to 0 charge. The .00625 value is a value which is | ||
// conglomerate but relates to the number of PE's produced; it will change | ||
// based on the number of shunts employed during a run. | ||
|
||
outHit[i].Amp = | ||
shunt * | ||
((charge1 + charge2 + charge3 + charge4 + charge5 - 36) * .00625); | ||
} | ||
|
||
return; | ||
} | ||
|
Oops, something went wrong.