Chinese & English Cws Pos Ner Entity Recognition implement using CNN bi-directional lstm and crf model with char embedding.基于字向量的CNN池化双向BiLSTM与CRF模型的网络,可能一体化的完成中文和英文分词,词性标注,实体识别。主要包括原始文本数据,数据转换,训练脚本,预训练模型,可用于序列标注研究.注意:唯一需要实现的逻辑是将用户数据转化为序列模型。分词准确率约为93%,词性标注准确率约为90%,实体标注(在本样本上)约为85%。
-
Notifications
You must be signed in to change notification settings - Fork 13
Chinese & English Cws Pos Ner Entity Recognition implement using CNN bi-directional lstm and crf model with char embedding.基于字向量的CNN池化双向BiLSTM与CRF模型的网络,可能一体化的完成中文和英文分词,词性标注,实体识别。主要包括原始文本数据,数据转换,训练脚本,预训练模型,可用于序列标注研究.注意:唯一需要实现的逻辑是将用户数据转化为序列模型。分词准确率约为93%,词性标注准确率约为90%,实体标注(在本样本上)约为85%。
KungWanyi/CwsPosNerCNNRNNLSTM
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
Chinese & English Cws Pos Ner Entity Recognition implement using CNN bi-directional lstm and crf model with char embedding.基于字向量的CNN池化双向BiLSTM与CRF模型的网络,可能一体化的完成中文和英文分词,词性标注,实体识别。主要包括原始文本数据,数据转换,训练脚本,预训练模型,可用于序列标注研究.注意:唯一需要实现的逻辑是将用户数据转化为序列模型。分词准确率约为93%,词性标注准确率约为90%,实体标注(在本样本上)约为85%。
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published