Skip to content

Denoised Embedding Manifold Preservation

License

Notifications You must be signed in to change notification settings

KrishnaswamyLab/DEMaP

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DEMaP

Nature Biotechnology Publication Twitter GitHub stars

Denoised Embedding Manifold Preservation (DEMaP) is a metric for measuring the quality of dimensionality reduction for visualization.

DEMaP Performance Schematic

Install

Install DEMaP with pip:

pip install git+https://github.com/scottgigante/DEMaP

To install with all optional dependencies:

git clone https://github.com/scottgigante/DEMaP
cd DEMaP
pip install .[scripts]

To run the Splatter simulation, you will need to have R >=3.4 and the Python package rpy2 installed. (Note: if running R 3.4, you will need to install Splatter 1.8 from Bioconductor 3.9: see https://www.bioconductor.org/install/#Legacy for details.)

Run

If you have installed R and rpy2, you can run DEMaP on Splatter as follows:

# generate data
import demap
import scprep
scprep.run.install_bioconductor("splatter")
data_true = demap.splatter.paths(bcv=0, dropout=0, seed=42)
data_noisy = demap.splatter.paths(bcv=0.2, dropout=0.5, seed=42)

# run demap
embedding_phate = demap.embed.PHATE(data_noisy)
demap_phate = demap.DEMaP(data_true, embedding_phate)
embedding_tsne = demap.embed.TSNE(data_noisy)
demap_tsne = demap.DEMaP(data_true, embedding_tsne)
demap_phate, demap_tsne

Reproduce

Scripts to reproduce results in the PHATE paper are provided. Either run in series:

# setup
git clone https://github.com/scottgigante/DEMaP
cd DEMaP
pip install .[scripts]
cd scripts

# this takes a LONG time
mkdir ../results
python scripts/run_demap_splatter.py

# summarize the results
mkdir ../output
python scripts/plot_demap_splatter.py
python scripts/summarize_demap_splatter.py

or run in parallel (e.g. on a HPC cluster):

for i in {0..399}; do
    python run_demap_splatter.py $i &
done

Results

Below are the results from our Nature Biotechnology publication.

Moon, van Dijk, Wang, Gigante et al. **Visualizing Transitions and Structure for Biological Data Exploration**. 2019. *Nature Biotechnology*.

Detailed results

Contributing

If you wish to add your method to the comparison or improve the way we run a method, please submit a pull request.

About

Denoised Embedding Manifold Preservation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%