Skip to content

Kingshida/AccelerometerCalibration

 
 

Repository files navigation

Matlab Accelerometer calibration functions

Matlab functions to calculate the accelerometers calibration parameters from tilt data using the method described in Gietzelt, M., Wolf, K. H., Marschollek, M., & Haux, R. (2013). Performance comparison of accelerometer calibration algorithms based on 3D-ellipsoid fitting methods. Computer Methods and Programs in Biomedicine, 111(1), 62-71. http://doi.org/10.1016/j.cmpb.2013.03.006

Example of accelerometer calibration and test with data

This shows an example of accelerometer calibration.

Loading and view the calibration data

%Load the calibration data. This was recorded making slow movements in the
%accelerometer in such way the gravity vector forms a sphere.

load calib_acc_01.mat

accXcalib = double(Respiratory_Sensor_Port_COM3_Canal_0_g_Amplitude);
accYcalib = double(Respiratory_Sensor_Port_COM3_Canal_1_g_Amplitude);
accZcalib = double(Respiratory_Sensor_Port_COM3_Canal_2_g_Amplitude);

%Plot the data so you can see the movement made.

plot3(accXcalib, accYcalib, accZcalib);

alt text

Calculate the accelerometer calibration parameters

[ offset, scale, radius ] = calibrateAccelerometer(accXcalib, accYcalib, accZcalib)

offset =

0.0593
0.0744
0.0280

scale =

1.0211
1.0291
0.9866

radius =

1.0094

Loading a test accelerometer signal

%Load the test signal. This signal contains the accelerometer fixed in 12
%different positions.

%Concatenate the data
accX = [];
accY = [];
accZ = [];

for n=1:12

    load(['fix_acc_01_' num2str(n) '.mat'])

    eval(['accX = [accX Respiratory_Sensor_Port_COM3_Canal_0_g_Amplitude];']);
    eval(['accY = [accY Respiratory_Sensor_Port_COM3_Canal_1_g_Amplitude];']);
    eval(['accZ = [accZ Respiratory_Sensor_Port_COM3_Canal_2_g_Amplitude];']);

end

%Plot the data so you can see the test points on the sphere.

plot3(accX, accY, accZ, 'x');

alt text

Calculate the norm of the acceleration before the calibration

%Norm of the acceleration before the calibration
modBeforeCalibration = sqrt(accX.^2 + accY.^2 + accZ.^2);

%The histogram of the norm before the calibration.
hist(modBeforeCalibration,20);
title(['Before calibration']);
xlim([0.8 1.2]);

alt text

Applying the calibration factors

%Apply the calibration factors
[ calibAccX, calibAccY, calibAccZ ] = applyCalibrationFactor( accX, accY, accZ, offset, scale );

Calculate the norm after the calibration

modAfterCalibration = sqrt(calibAccX.^2 + calibAccY.^2 + calibAccZ.^2);

%Comparing the histogram before and after the calibration.
subplot(2, 1, 1);
hist(modBeforeCalibration,20);
title(['Before calibration']);
xlim([0.8 1.2]);
xlabel('Acceleration (g)');
subplot(2, 1, 2);
hist(modAfterCalibration,20);
title('After calibration');
xlim([0.8 1.2]);
xlabel('Acceleration (g)');

alt text

Copyright 2016 Ailton Luiz Dias Siqueira Junior.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

About

An accelerometer calibration algorithm implemented in Matlab

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • HTML 63.7%
  • MATLAB 36.3%